Numpy argmax - random tie breaking
Use np.random.choice
-
np.random.choice(np.flatnonzero(b == b.max()))
Let's verify for an array with three max candidates -
In [298]: b
Out[298]: array([0, 5, 2, 5, 4, 5])
In [299]: c=[np.random.choice(np.flatnonzero(b == b.max())) for i in range(100000)]
In [300]: np.bincount(c)
Out[300]: array([ 0, 33180, 0, 33611, 0, 33209])
In the case of a multi-dimensional array, choice
won't work.
An alternative is
def randargmax(b,**kw):
""" a random tie-breaking argmax"""
return np.argmax(np.random.random(b.shape) * (b==b.max()), **kw)
If for some reason generating random floats is slower than some other method, random.random
can be replaced with that other method.
Easiest way is
np.random.choice(np.where(b == b.max())[0])