numpy boolean array with 1 bit entries
You want a bitarray:
efficient arrays of booleans -- C extension
This module provides an object type which efficiently represents an array of booleans. Bitarrays are sequence types and behave very much like usual lists. Eight bits are represented by one byte in a contiguous block of memory. The user can select between two representations; little-endian and big-endian. All of the functionality is implemented in C. Methods for accessing the machine representation are provided. This can be useful when bit level access to binary files is required, such as portable bitmap image files (.pbm). Also, when dealing with compressed data which uses variable bit length encoding, you may find this module useful...
You might like to take a look at bitstring (documentation here).
If you create a ConstBitArray
or ConstBitStream
from a file then it will use mmap
and not load it into memory. In this case it won't be mutable so if you want to make changes it will have to be loaded in memory.
For example to create without loading into memory:
>>> a = bitstring.ConstBitArray(filename='your_file')
or
>>> b = bitstring.ConstBitStream(a_file_object)
To do this you can use numpy's packbits
and unpackbits
:
import numpy as np
# original boolean array
A1 = np.array([
[0, 1, 1, 0, 1],
[0, 0, 1, 1, 1],
[1, 1, 1, 1, 1],
], dtype=bool)
# packed data
A2 = np.packbits(A1, axis=None)
# checking the size
print(len(A1.tostring())) # 15 bytes
print(len(A2.tostring())) # 2 bytes (ceil(15/8))
# reconstructing from packed data. You need to resize and reshape
A3 = np.unpackbits(A2, count=A1.size).reshape(A1.shape).view(bool)
# and the arrays are equal
print(np.array_equal(A1, A3)) # True
Prior to numpy 1.17.0, the first function is straight-forward to use, but reconstruction required additional manipulations. Here is an example:
import numpy as np
# original boolean array
A1 = np.array([
[0, 1, 1, 0, 1],
[0, 0, 1, 1, 1],
[1, 1, 1, 1, 1],
], dtype=np.bool)
# packed data
A2 = np.packbits(A1, axis=None)
# checking the size
print(len(A1.tostring())) # 15 bytes
print(len(A2.tostring())) # 2 bytes (ceil(15/8))
# reconstructing from packed data. You need to resize and reshape
A3 = np.unpackbits(A2, axis=None)[:A1.size].reshape(A1.shape).astype(np.bool)
# and the arrays are equal
print(np.array_equal(A1, A3)) # True