Numpy: Divide each row by a vector element

As has been mentioned, slicing with None or with np.newaxes is a great way to do this. Another alternative is to use transposes and broadcasting, as in

(data.T - vector).T

and

(data.T / vector).T

For higher dimensional arrays you may want to use the swapaxes method of NumPy arrays or the NumPy rollaxis function. There really are a lot of ways to do this.

For a fuller explanation of broadcasting, see http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html


Pythonic way to do this is ...

np.divide(data.T,vector).T

This takes care of reshaping and also the results are in floating point format. In other answers results are in rounded integer format.

#NOTE: No of columns in both data and vector should match


Here you go. You just need to use None (or alternatively np.newaxis) combined with broadcasting:

In [6]: data - vector[:,None]
Out[6]:
array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 0]])

In [7]: data / vector[:,None]
Out[7]:
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])

Adding to the answer of stackoverflowuser2010, in the general case you can just use

data = np.array([[1,1,1],[2,2,2],[3,3,3]])

vector = np.array([1,2,3])

data / vector.reshape(-1,1)

This will turn your vector into a column matrix/vector. Allowing you to do the elementwise operations as you wish. At least to me, this is the most intuitive way going about it and since (in most cases) numpy will just use a view of the same internal memory for the reshaping it's efficient too.