Odd / Even integrals

If $f(x)$ is even then $f(-x) = f(x)$. So $$\int_{-2}^2 f(x) \, \mathrm{d}x = \int_{-2}^0 f(x)\, \mathrm{d}x + \int_0^2 f(x) \, \mathrm{d}x = \int_0^2 f(-x) \, \mathrm{d}x + \int_0^2 f(x) \, \mathrm{d}x$$

But then $f(-x) = f(x)$ so that simplifies to $2\int_0^2 f$.

Similarly, if $f$ is odd - that is: $f(-x) = -f(x)$ we get $$\int_{-2}^2 f(x) \, \mathrm{d}x = \int_{-2}^0 f(x)\, \mathrm{d}x + \int_0^2 f(x) \, \mathrm{d}x = \int_0^2 f(-x) \, \mathrm{d}x + \int_0^2 f(x) \, \mathrm{d}x = 0$$


Not exactly: $$\begin{cases}\displaystyle\int_{-a}^a f(x)\,\mathrm d\mkern1mu x=2\int_{0}^a f(x)\,\mathrm d\mkern1mu x &\text{if }\;f\;\text{ is even,}\\ \displaystyle\int_{-a}^a f(x)\,\mathrm d\mkern1mu x=0&\text{if }\;f\;\text{ is odd.}\end{cases}$$ To see it, make the substitution $\;t=-x$, $\;\mathrm d\mkern1mu x=-\mathrm d\mkern1mu t$: $$\int_{-a}^0 f(x)\,\mathrm d\mkern1mu x=-\int_{a}^0 f(-t)\,\mathrm d\mkern1mu t=\int_{0}^a f(-t)\,\mathrm d\mkern1mu t=\begin{cases}\displaystyle\int_{0}^a f(-t)\,\mathrm d\mkern1mu t&(f\;\text{even}),\\\displaystyle-\int_{0}^a f(-t)\,\mathrm d\mkern1mu t&(f\;\text{odd}),\end{cases}$$ then use Chasles relation.


Start by splitting the integral into two pieces, the part over negatives values of $x$ and the part over positive values.

$$ \int_{-2}^{2} f(x)\,dx = \int_{-2}^{0} f(x)\,dx + \int_{0}^{2} f(x)\,dx$$

From here you can apply the definition of an even or odd function