Optimizing a branch for a known more-common path
Following other answers' suggestions, I benchmarked the solutions. If you consider upvoting this answer, please upvote the others too.
Benchmark code
#include <iostream>
#include <iomanip>
#include <string>
// solutions
#include <ctime>
// benchmak
#include <limits>
#include <random>
#include <chrono>
#include <algorithm>
#include <functional>
//
// Solutions
//
namespace
{
volatile std::time_t near_futur = -1;
void error_handling() { std::cerr << "error\n"; }
bool method_impl() { return std::time(NULL) != near_futur; }
bool method_no_builtin()
{
const bool res = method_impl();
if (res == false) {
error_handling();
return false;
}
return true;
}
bool method_builtin()
{
const bool res = method_impl();
if (__builtin_expect(res, 1) == false) {
error_handling();
return false;
}
return true;
}
bool method_builtin_incorrect()
{
const bool res = method_impl();
if (__builtin_expect(res, 0) == false) {
error_handling();
return false;
}
return true;
}
bool method_rewritten()
{
const bool res = method_impl();
if (res == true) {
return true;
} else {
error_handling();
return false;
}
}
}
//
// benchmark
//
constexpr std::size_t BENCHSIZE = 10'000'000;
class Clock
{
std::chrono::time_point<std::chrono::steady_clock> _start;
public:
static inline std::chrono::time_point<std::chrono::steady_clock> now() { return std::chrono::steady_clock::now(); }
Clock() : _start(now())
{
}
template<class DurationUnit>
std::size_t end()
{
return std::chrono::duration_cast<DurationUnit>(now() - _start).count();
}
};
//
// Entry point
//
int main()
{
{
Clock clock;
bool result = true;
for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
{
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
result &= method_no_builtin();
}
const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
std::cout << std::setw(40) << "method_no_builtin(): " << std::setprecision(3) << unit_time << " ns\n";
}
{
Clock clock;
bool result = true;
for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
{
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
result &= method_builtin();
}
const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
std::cout << std::setw(40) << "method_builtin(): " << std::setprecision(3) << unit_time << " ns\n";
}
{
Clock clock;
bool result = true;
for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
{
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
result &= method_builtin_incorrect();
}
const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
std::cout << std::setw(40) << "method_builtin_incorrect(): " << std::setprecision(3) << unit_time << " ns\n";
}
{
Clock clock;
bool result = true;
for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
{
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
result &= method_rewritten();
}
const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
std::cout << std::setw(40) << "method_rewritten(): " << std::setprecision(3) << unit_time << " ns\n";
}
}
Benchmark results
g++ -std=c++14 -O2 -Wall -Wextra -Werror main.cpp
method_no_builtin(): 42.8 ns
method_builtin(): 44.4 ns
method_builtin_incorrect(): 51.4 ns
method_rewritten(): 39.3 ns
Demo
g++ -std=c++14 -O3 -Wall -Wextra -Werror main.cpp
method_no_builtin(): 32.3 ns
method_builtin(): 31.1 ns
method_builtin_incorrect(): 35.6 ns
method_rewritten(): 30.5 ns
Demo
Conclusion
The difference between those optimizations are too small to come to any conclusion other than: if there is a performance gain to find in optimizing a branch for a known more common path, this gain is too small to be worth the trouble and the loss in readability.
You could suggest the compiler that the method_impl()
will return true:
void error_handling();
bool method_impl();
bool method()
{
const bool res = method_impl();
if (__builtin_expect (res, 0) == false) {
error_handling();
return false;
}
return true;
}
This will work in GCC.
The underlying hardware already performs this optimizations. It will "fail" to predict it the first times, but after it will hit the correct option en.wikipedia.org/wiki/Branch_predictor.
You can try applying the GCC extension and check if it is faster with it or not, but I think you will barely see any difference with it and without it. The branch prediction is applied always, it is not something you enable