Output a primitive element for each field size
Mathematica, 127 bytes
Do[For[i=2*2^n,PolynomialMod[x^Divisors[2^n-1]+1,i~IntegerDigits~2~FromDigits~x,Modulus->2]~Count~0!=1,i--];Print@{2,i},{n,32}]
Explanation:
If we choose a primitive polynomial as the irreducible polynomial, then \$x\$ is a primitive element. A irreducible polynomial of degree \$n\$ is primitive if and only if it has order \$2^n - 1\$, i.e., it is divisible by \$x^{2^n - 1} - 1\$, but not divisible by any \$x^i - 1\$, where \$i\$ runs through all the proper divisors of \$2^n - 1\$.
Output:
Outputs integers whose bits are the coefficients of the polynomials. For example, \$8589934581\$ is \$111111111111111111111111111110101\$ when written in binary, so it represents the polynomial $$x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+\\x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+\\x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+\\x^8+x^7+x^6+x^5+x^4+x^2+1$$
{2,3} {2,7} {2,13} {2,25} {2,61} {2,115} {2,253} {2,501} {2,1019} {2,2041} {2,4073} {2,8137} {2,16381} {2,32743} {2,65533} {2,131053} {2,262127} {2,524263} {2,1048531} {2,2097145} {2,4194227} {2,8388589} {2,16777213} {2,33554351} {2,67108849} {2,134217697} {2,268435427} {2,536870805} {2,1073741801} {2,2147483533} {2,4294967287} {2,8589934581}
Pari/GP, 114 bytes
Inspired by isaacg's answer in another question.
for(n=1,32,for(i=1,2^n,if(sumdiv(2^n-1,d,Mod(x,f=Mod(Pol(binary(2*2^n-i)),2))^d==1)==1,print([x,lift(f)]);break)))
Try it online!
If built-ins are allowed:
Pari/GP, 61 bytes (non-competing)
for(i=1,32,print([ffprimroot(ffgen(f=ffinit(2,i))),lift(f)]))
Try it online!