Pandas bar plot -- specify bar color by column

Pandas version 1.1.0 makes this easier. You can pass a dictionary to specify different color for each column in the pandas.DataFrame.plot.bar() function:

enter image description here

Here is an example:

df1 = pd.DataFrame({'a': [1.2, .8, .9], 'b': [.2, .9, .7]})
df2 = pd.DataFrame({'b': [0.2, .5, .4], 'c': [.5, .6, .7], 'd': [1.1, .6, .7]})
color_dict = {'a':'green', 'b': 'red', 'c':'blue', 'd': 'cyan'}
df1.plot.bar(color = color_dict)
df2.plot.bar(color = color_dict)

You can pass a list as the colors. This will require a little bit of manual work to get it to line up, unlike if you could pass a dictionary, but may be a less cluttered way to accomplish your goal.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

color_list = ['b', 'g', 'r', 'c']


df1.plot(kind='bar', ax=plt.subplot(121), color=color_list)
df2.plot(kind='bar', ax=plt.subplot(122), color=color_list[1:])

plt.show()

enter image description here

EDIT Ajean came up with a simple way to return a list of the correct colors from a dictionary:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']
color_list = ['b', 'g', 'r', 'c']
d2c = dict(zip(data_files, color_list))

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

df1.plot(kind='bar', ax=plt.subplot(121), color=map(d2c.get,df1.columns))
df2.plot(kind='bar', ax=plt.subplot(122), color=map(d2c.get,df2.columns))

plt.show()