Pandas cast all object columns to category
use apply
and pd.Series.astype
with dtype='category'
Consider the pd.DataFrame
df
df = pd.DataFrame(dict(
A=[1, 2, 3, 4],
B=list('abcd'),
C=[2, 3, 4, 5],
D=list('defg')
))
df
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A 4 non-null int64
B 4 non-null object
C 4 non-null int64
D 4 non-null object
dtypes: int64(2), object(2)
memory usage: 200.0+ bytes
Lets use select_dtypes
to include all 'object'
types to convert and recombine with a select_dtypes
to exclude them.
df = pd.concat([
df.select_dtypes([], ['object']),
df.select_dtypes(['object']).apply(pd.Series.astype, dtype='category')
], axis=1).reindex_axis(df.columns, axis=1)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A 4 non-null int64
B 4 non-null category
C 4 non-null int64
D 4 non-null category
dtypes: category(2), int64(2)
memory usage: 208.0 bytes
I think that this is a more elegant way:
df = pd.DataFrame(dict(
A=[1, 2, 3, 4],
B=list('abcd'),
C=[2, 3, 4, 5],
D=list('defg')
))
df.info()
df.loc[:, df.dtypes == 'object'] =\
df.select_dtypes(['object'])\
.apply(lambda x: x.astype('category'))
df.info()