Pandas DataFrame and Keras

https://pypi.org/project/keras-pandas/

Easiest way is having the keras_pandas package to fit a pandas dataframe to keras.The code shown below is an general example from the package docs.

from keras import Model
from keras.layers import Dense

from keras_pandas.Automater import Automater
from keras_pandas.lib import load_titanic

observations = load_titanic()

# Transform the data set, using keras_pandas
categorical_vars = ['pclass', 'sex', 'survived']
numerical_vars = ['age', 'siblings_spouses_aboard', 'parents_children_aboard', 'fare']
text_vars = ['name']

auto = Automater(categorical_vars=categorical_vars, numerical_vars=numerical_vars, text_vars=text_vars,
 response_var='survived')
X, y = auto.fit_transform(observations)

# Start model with provided input nub
x = auto.input_nub

# Fill in your own hidden layers
x = Dense(32)(x)
x = Dense(32, activation='relu')(x)
x = Dense(32)(x)

# End model with provided output nub
x = auto.output_nub(x)

model = Model(inputs=auto.input_layers, outputs=x)
model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Train model
model.fit(X, y, epochs=4, validation_split=.2)

None is the number of expected rows that goes into training therefore you can't define it. Also Keras needs a numpy array as input and not a pandas dataframe. First convert the df to a numpy array with df.values and then do np.reshape((-1, 4834)). Note that you should use np.float32. This is important if you train it on GPU.


You need a specific version of Pandas for this to work. If you use the current version (as of 20th Aug 2018) this will fail.

Rollback your Pandas and Keras (pip uninstall ....) and then install a specific version like this

python -m pip install pandas==0.19.2