pandas dataframe groupby and join

Solution 1:

In [25]: df.groupby('B')['C','D'].transform('sum').prod(1)
Out[25]:
0    0.112635
1    0.112635
2    0.235371
3    1.023841
4    0.235371
5    0.235371
6    0.112635
7    1.023841
dtype: float64

Solution 2:

In [18]: grp = df.groupby('B')

In [19]: grp['C'].transform('sum') * grp['D'].transform('sum')
Out[19]:
0    0.112635
1    0.112635
2    0.235371
3    1.023841
4    0.235371
5    0.235371
6    0.112635
7    1.023841
dtype: float64

Demo:

In [20]: df
Out[20]:
     A      B         C         D
0  foo    one -1.085631  1.265936
1  bar    one  0.997345 -0.866740
2  foo    two  0.282978 -0.678886
3  bar  three -1.506295 -0.094709
4  foo    two -0.578600  1.491390
5  bar    two  1.651437 -0.638902
6  foo    one -2.426679 -0.443982
7  foo  three -0.428913 -0.434351

In [21]: grp = df.groupby('B')

In [22]: df['new'] = grp['C'].transform('sum') * grp['D'].transform('sum')

In [23]: df
Out[23]:
     A      B         C         D       new
0  foo    one -1.085631  1.265936  0.112635
1  bar    one  0.997345 -0.866740  0.112635
2  foo    two  0.282978 -0.678886  0.235371
3  bar  three -1.506295 -0.094709  1.023841
4  foo    two -0.578600  1.491390  0.235371
5  bar    two  1.651437 -0.638902  0.235371
6  foo    one -2.426679 -0.443982  0.112635
7  foo  three -0.428913 -0.434351  1.023841


In [26]: df['new2'] = df.groupby('B')['C','D'].transform('sum').prod(1)

In [27]: df
Out[27]:
     A      B         C         D       new      new2
0  foo    one -1.085631  1.265936  0.112635  0.112635
1  bar    one  0.997345 -0.866740  0.112635  0.112635
2  foo    two  0.282978 -0.678886  0.235371  0.235371
3  bar  three -1.506295 -0.094709  1.023841  1.023841
4  foo    two -0.578600  1.491390  0.235371  0.235371
5  bar    two  1.651437 -0.638902  0.235371  0.235371
6  foo    one -2.426679 -0.443982  0.112635  0.112635
7  foo  three -0.428913 -0.434351  1.023841  1.023841

Check:

In [28]: df.new.eq(df.new2).all()
Out[28]: True