Pandas 'describe' is not returning summary of all columns

As of pandas v15.0, use the parameter, DataFrame.describe(include = 'all') to get a summary of all the columns when the dataframe has mixed column types. The default behavior is to only provide a summary for the numerical columns.

Example:

In[1]:

df = pd.DataFrame({'$a':['a', 'b', 'c', 'd', 'a'], '$b': np.arange(5)})
df.describe(include = 'all')

Out[1]:

        $a    $b
count   5   5.000000
unique  4   NaN
top     a   NaN
freq    2   NaN
mean    NaN 2.000000
std     NaN 1.581139
min     NaN 0.000000
25%     NaN 1.000000
50%     NaN 2.000000
75%     NaN 3.000000
max     NaN 4.000000

The numerical columns will have NaNs for summary statistics pertaining to objects (strings) and vice versa.

Summarizing only numerical or object columns

  1. To call describe() on just the numerical columns use describe(include = [np.number])
  2. To call describe() on just the objects (strings) using describe(include = ['O']).

    In[2]:
    
    df.describe(include = [np.number])
    
    Out[3]:
    
             $b
    count   5.000000
    mean    2.000000
    std     1.581139
    min     0.000000
    25%     1.000000
    50%     2.000000
    75%     3.000000
    max     4.000000
    
    In[3]:
    
    df.describe(include = ['O'])
    
    Out[3]:
    
        $a
    count   5
    unique  4
    top     a
    freq    2
    

'describe()' on a DataFrame only works for numeric types. If you think you have a numeric variable and it doesn't show up in 'decribe()', change the type with:

df[['col1', 'col2']] = df[['col1', 'col2']].astype(float)

You could also create new columns for handling the numeric part of a mix type column, or convert strings to numbers using a dictionary and the map() function.

'describe()' on a non-numerical Series will give you some statistics (like count, unique and the most frequently occurring value).


pd.options.display.max_columns = DATA.shape[1] will work.

Here DATA is a 2d matrix, and above code will display stats vertically.


In addition to the data type issues discussed in the other answers, you might also have too many columns to display. If there are too many columns, the middle columns will be replaced with a total of three dots (...).

Other answers have pointed out that the include='all' parameter of describe can help with the data type issue. Another question asked, "How do I expand the output display to see more columns?" The solution is to modify the display.max_columns setting, which can even be done temporarily. For example, to display up to 40 columns of output from a single describe statement:

with pd.option_context('display.max_columns', 40):
    print(df.describe(include='all'))

Tags:

Python

Pandas