Pandas finding local max and min

The solution offered by fuglede is great but if your data is very noisy (like the one in the picture) you will end up with lots of misleading local extremes. I suggest that you use scipy.signal.argrelextrema() method. The .argrelextrema() method has its own limitations but it has a useful feature where you can specify the number of points to be compared, kind of like a noise filtering algorithm. for example:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.signal import argrelextrema

# Generate a noisy AR(1) sample

np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
    xs.append(xs[-1] * 0.9 + r)
df = pd.DataFrame(xs, columns=['data'])

n = 5  # number of points to be checked before and after

# Find local peaks

df['min'] = df.iloc[argrelextrema(df.data.values, np.less_equal,
                    order=n)[0]]['data']
df['max'] = df.iloc[argrelextrema(df.data.values, np.greater_equal,
                    order=n)[0]]['data']

# Plot results

plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
plt.plot(df.index, df['data'])
plt.show()

Some points:

  • you might need to check the points afterward to ensure there are no twine points very close to each other.
  • you can play with n to filter the noisy points
  • argrelextrema returns a tuple and the [0] at the end extracts a numpy array

Assuming that the column of interest is labelled data, one solution would be

df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]

For example:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Generate a noisy AR(1) sample
np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
    xs.append(xs[-1]*0.9 + r)
df = pd.DataFrame(xs, columns=['data'])

# Find local peaks
df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]

# Plot results
plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
df.data.plot()

enter image description here