Pandas: how to merge two dataframes on a column by keeping the information of the first one?

Sample:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Age': [34, 18, 44, 27, 30]})

#print (df1)
df3 = df1.copy()

df2 = pd.DataFrame({'Name': ['Tom', 'Paul', 'Eva', 'Jack', 'Michelle'], 
                    'Sex': ['M', 'M', 'F', 'M', 'F']})
#print (df2)

Use map by Series created by set_index:

df1['Sex'] = df1['Name'].map(df2.set_index('Name')['Sex'])
print (df1)
    Name  Age  Sex
0    Tom   34    M
1   Sara   18  NaN
2    Eva   44    F
3   Jack   27    M
4  Laura   30  NaN

Alternative solution with merge with left join:

df = df3.merge(df2[['Name','Sex']], on='Name', how='left')
print (df)
    Name  Age  Sex
0    Tom   34    M
1   Sara   18  NaN
2    Eva   44    F
3   Jack   27    M
4  Laura   30  NaN

If need map by multiple columns (e.g. Year and Code) need merge with left join:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Year':[2000,2003,2003,2004,2007],
                    'Code':[1,2,3,4,4],
                    'Age': [34, 18, 44, 27, 30]})

print (df1)
    Name  Year  Code  Age
0    Tom  2000     1   34
1   Sara  2003     2   18
2    Eva  2003     3   44
3   Jack  2004     4   27
4  Laura  2007     4   30

df2 = pd.DataFrame({'Name': ['Tom', 'Paul', 'Eva', 'Jack', 'Michelle'], 
                    'Sex': ['M', 'M', 'F', 'M', 'F'],
                    'Year':[2001,2003,2003,2004,2007],
                    'Code':[1,2,3,5,3],
                    'Val':[21,34,23,44,67]})
print (df2)
       Name Sex  Year  Code  Val
0       Tom   M  2001     1   21
1      Paul   M  2003     2   34
2       Eva   F  2003     3   23
3      Jack   M  2004     5   44
4  Michelle   F  2007     3   67
#merge by all columns
df = df1.merge(df2, on=['Year','Code'], how='left')
print (df)
  Name_x  Year  Code  Age Name_y  Sex   Val
0    Tom  2000     1   34    NaN  NaN   NaN
1   Sara  2003     2   18   Paul    M  34.0
2    Eva  2003     3   44    Eva    F  23.0
3   Jack  2004     4   27    NaN  NaN   NaN
4  Laura  2007     4   30    NaN  NaN   NaN

#specified columns - columns for join (Year, Code) need always + appended columns (Val)
df = df1.merge(df2[['Year','Code', 'Val']], on=['Year','Code'], how='left')
print (df)
    Name  Year  Code  Age   Val
0    Tom  2000     1   34   NaN
1   Sara  2003     2   18  34.0
2    Eva  2003     3   44  23.0
3   Jack  2004     4   27   NaN
4  Laura  2007     4   30   NaN

If get error with map it means duplicates by columns of join, here Name:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Age': [34, 18, 44, 27, 30]})

print (df1)
    Name  Age
0    Tom   34
1   Sara   18
2    Eva   44
3   Jack   27
4  Laura   30

df3, df4 = df1.copy(), df1.copy()

df2 = pd.DataFrame({'Name': ['Tom', 'Tom', 'Eva', 'Jack', 'Michelle'], 
                    'Val': [1,2,3,4,5]})
print (df2)
       Name  Val
0       Tom    1 <-duplicated name Tom
1       Tom    2 <-duplicated name Tom
2       Eva    3
3      Jack    4
4  Michelle    5

s = df2.set_index('Name')['Val']
df1['New'] = df1['Name'].map(s)
print (df1)

InvalidIndexError: Reindexing only valid with uniquely valued Index objects

Solutions are removed duplicates by DataFrame.drop_duplicates, or use map by dict for last dupe match:

#default keep first value
s = df2.drop_duplicates('Name').set_index('Name')['Val']
print (s)
Name
Tom         1
Eva         3
Jack        4
Michelle    5
Name: Val, dtype: int64

df1['New'] = df1['Name'].map(s)
print (df1)
    Name  Age  New
0    Tom   34  1.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN
#add parameter for keep last value 
s = df2.drop_duplicates('Name', keep='last').set_index('Name')['Val']
print (s)
Name
Tom         2
Eva         3
Jack        4
Michelle    5
Name: Val, dtype: int64

df3['New'] = df3['Name'].map(s)
print (df3)
    Name  Age  New
0    Tom   34  2.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN
#map by dictionary
d = dict(zip(df2['Name'], df2['Val']))
print (d)
{'Tom': 2, 'Eva': 3, 'Jack': 4, 'Michelle': 5}

df4['New'] = df4['Name'].map(d)
print (df4)
    Name  Age  New
0    Tom   34  2.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN