Pandas Merge returns NaN

You need same dtype of joined columns:

#convert first or second to str or int
MergeDat['Motor'] = MergeDat['Motor'].astype(str)
#Motor['Motor'] = Motor['Motor'].astype(str)

#MergeDat['Motor'] = MergeDat['Motor'].astype(int)
Motor['Motor'] = Motor['Motor'].astype(int)

#convert first or second to str or int
#MergeDat['Motor'] = MergeDat['Motor'].astype(str)
Motor['Motor'] = Motor['Motor'].astype(str)

MergeDat['Motor'] = MergeDat['Motor'].astype(int)
#Motor['Motor'] = Motor['Motor'].astype(int)


MergeDat=MergeDat.merge(Motor,how="left")

In my case, it was because I haven't reset the index after splitting the data frame, using df.reset_index(drop=True). Resetting the index of the first data frame enabled merging a second data frame to it.