permutations with unique values
This relies on the implementation detail that any permutation of a sorted iterable are in sorted order unless they are duplicates of prior permutations.
from itertools import permutations
def unique_permutations(iterable, r=None):
previous = tuple()
for p in permutations(sorted(iterable), r):
if p > previous:
previous = p
yield p
for p in unique_permutations('cabcab', 2):
print p
gives
('a', 'a')
('a', 'b')
('a', 'c')
('b', 'a')
('b', 'b')
('b', 'c')
('c', 'a')
('c', 'b')
('c', 'c')
Roughly as fast as Luka Rahne's answer, but shorter & simpler, IMHO.
def unique_permutations(elements):
if len(elements) == 1:
yield (elements[0],)
else:
unique_elements = set(elements)
for first_element in unique_elements:
remaining_elements = list(elements)
remaining_elements.remove(first_element)
for sub_permutation in unique_permutations(remaining_elements):
yield (first_element,) + sub_permutation
>>> list(unique_permutations((1,2,3,1)))
[(1, 1, 2, 3), (1, 1, 3, 2), (1, 2, 1, 3), ... , (3, 1, 2, 1), (3, 2, 1, 1)]
It works recursively by setting the first element (iterating through all unique elements), and iterating through the permutations for all remaining elements.
Let's go through the unique_permutations
of (1,2,3,1) to see how it works:
unique_elements
are 1,2,3- Let's iterate through them:
first_element
starts with 1.remaining_elements
are [2,3,1] (ie. 1,2,3,1 minus the first 1)- We iterate (recursively) through the permutations of the remaining elements: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)
- For each
sub_permutation
, we insert thefirst_element
: (1,1,2,3), (1,1,3,2), ... and yield the result.
- Now we iterate to
first_element
= 2, and do the same as above.remaining_elements
are [1,3,1] (ie. 1,2,3,1 minus the first 2)- We iterate through the permutations of the remaining elements: (1, 1, 3), (1, 3, 1), (3, 1, 1)
- For each
sub_permutation
, we insert thefirst_element
: (2, 1, 1, 3), (2, 1, 3, 1), (2, 3, 1, 1)... and yield the result.
- Finally, we do the same with
first_element
= 3.
Because sometimes new questions are marked as duplicates and their authors are referred to this question it may be important to mention that sympy has an iterator for this purpose.
>>> from sympy.utilities.iterables import multiset_permutations
>>> list(multiset_permutations([1,1,1]))
[[1, 1, 1]]
>>> list(multiset_permutations([1,1,2]))
[[1, 1, 2], [1, 2, 1], [2, 1, 1]]
class unique_element:
def __init__(self,value,occurrences):
self.value = value
self.occurrences = occurrences
def perm_unique(elements):
eset=set(elements)
listunique = [unique_element(i,elements.count(i)) for i in eset]
u=len(elements)
return perm_unique_helper(listunique,[0]*u,u-1)
def perm_unique_helper(listunique,result_list,d):
if d < 0:
yield tuple(result_list)
else:
for i in listunique:
if i.occurrences > 0:
result_list[d]=i.value
i.occurrences-=1
for g in perm_unique_helper(listunique,result_list,d-1):
yield g
i.occurrences+=1
a = list(perm_unique([1,1,2]))
print(a)
result:
[(2, 1, 1), (1, 2, 1), (1, 1, 2)]
EDIT (how this works):
I rewrote the above program to be longer but more readable.
I usually have a hard time explaining how something works, but let me try. In order to understand how this works, you have to understand a similar but simpler program that would yield all permutations with repetitions.
def permutations_with_replacement(elements,n):
return permutations_helper(elements,[0]*n,n-1)#this is generator
def permutations_helper(elements,result_list,d):
if d<0:
yield tuple(result_list)
else:
for i in elements:
result_list[d]=i
all_permutations = permutations_helper(elements,result_list,d-1)#this is generator
for g in all_permutations:
yield g
This program is obviously much simpler: d stands for depth in permutations_helper and has two functions. One function is the stopping condition of our recursive algorithm, and the other is for the result list that is passed around.
Instead of returning each result, we yield it. If there were no function/operator yield
we would have to push the result in some queue at the point of the stopping condition. But this way, once the stopping condition is met, the result is propagated through all stacks up to the caller. That is the purpose offor g in perm_unique_helper(listunique,result_list,d-1): yield g
so each result is propagated up to caller.
Back to the original program:
we have a list of unique elements. Before we can use each element, we have to check how many of them are still available to push onto result_list. Working with this program is very similar to permutations_with_replacement
. The difference is that each element cannot be repeated more times than it is in perm_unique_helper.