Plotting a number line in Mathematica

Here's an ugly solution using RegionPlot. Open limits are represented using dotted lines and closed limits with full lines

numRegion[expr_, var_Symbol:x, range:{xmin_, xmax_}:{0, 0}, opts:OptionsPattern[]] :=
            Module[{le=LogicalExpand[Reduce[expr,var,Reals]],
                    y, opendots, closeddots, max, min, len},
 opendots =   Cases[Flatten[le/.And|Or->List], n_<var|n_>var|var<n_|var>n_:>n];
 closeddots = Cases[Flatten[le/.And|Or->List], n_<=var|n_>=var|var<=n_|var>=n_:>n];
 {max, min} = If[TrueQ[xmin < xmax], {xmin, xmax}, 
                 {Max, Min}@Cases[le, _?NumericQ, Infinity] // Through];
 len = max - min;
 RegionPlot[le && -1 < y < 1, {var, min-len/10, max+len/10}, {y, -1, 1},
            Epilog -> {Thick, Red, Line[{{#,1},{#,-1}}]&/@closeddots,
                       Dotted, Line[{{#,1},{#,-1}}]&/@opendots},
            Axes -> {True,False}, Frame->False, AspectRatio->.05, opts]]

An example reducing an absolute value:

numRegion[Abs[x] < 2]

example 1

Can use any variable:

numRegion[0 < y <= 1 || y >= 2, y]

example 2

Reduces extraneous inequalities, compare the following:

GraphicsColumn[{numRegion[0 < x <= 1 || x >= 2 || x < 0],
                numRegion[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]}]

example 3


Starting with Mathematica 10, there is NumberLinePlot available.


Here's another attempt that draws number lines with the more conventional white and black circles, although any graphics element that you want can be easily swapped out.

It relies on LogicalExpand[Simplify@Reduce[expr, x]] and Sort to get the expression into something resembling a canonical form that the replacement rules can work on. This is not extensively tested and probably a little fragile. For example if the given expr reduces to True or False, my code does not die gracefully.

numLine[expr_, x_Symbol:x, range:{_, _}:{Null, Null}, 
  Optional[hs:_?NumericQ, 1/30], opts:OptionsPattern[]] := 
 Module[{le = {LogicalExpand[Simplify@Reduce[expr, x]]} /. Or -> List,
   max, min, len, ints = {}, h, disk, hArrow, lt = Less|LessEqual, gt = Greater|GreaterEqual},
  If[TrueQ@MatchQ[range, {a_, b_} /; a < b],
   {min, max} = range,
   {min, max} = Through[{Min, Max}@Cases[le, _?NumericQ, \[Infinity]]]];
  len =Max[{max - min, 1}]; h = len hs;
  hArrow[{x1_, x2_}, head1_, head2_] := {{Thick, Line[{{x1, h}, {x2, h}}]},
                                         Tooltip[head1, x1], Tooltip[head2, x2]};
  disk[a_, ltgt_] := {EdgeForm[{Thick, Black}], 
    Switch[ltgt, Less | Greater, White, LessEqual | GreaterEqual, Black], 
    Disk[{a, h}, h]};
  With[{p = Position[le, And[_, _]]}, 
       ints = Extract[le, p] /. And -> (SortBy[And[##], First] &); 
       le = Delete[le, p]];   
  ints = ints /. (l1 : lt)[a_, x] && (l2 : lt)[x, b_] :> 
     hArrow[{a, b}, disk[a, l1], disk[b, l2]];
  le = le /. {(*_Unequal|True|False:>Null,*)
     (l : lt)[x, a_] :> (min = min - .3 len; 
       hArrow[{a, min}, disk[a, l], 
        Polygon[{{min, 0}, {min, 2 h}, {min - Sqrt[3] h, h}}]]),
     (g : gt)[x, a_] :> (max = max + .3 len; 
       hArrow[{a, max}, disk[a, g], 
        Polygon[{{max, 0}, {max, 2 h}, {max + Sqrt[3] h, h}}]])};
  Graphics[{ints, le}, opts, Axes -> {True, False}, 
   PlotRange -> {{min - .1 len, max + .1 len}, {-h, 3 h}},
   GridLines -> Dynamic[{{#, Gray}} & /@ MousePosition[
                           {"Graphics", Graphics}, None]], 
   Method -> {"GridLinesInFront" -> True}]
  ]

(Note: I had originally tried to use Arrow and Arrowheads to draw the lines - but since Arrowheads automatically rescales the arrow heads with respect to the width of the encompassing graphics, it gave me too many headaches.)

OK, some examples:

numLine[0 < x], 
numLine[0 > x]
numLine[0 < x <= 1, ImageSize -> Medium]

enter image description here
enter image description here
enter image description here

numLine[0 < x <= 1 || x > 2, Ticks -> {{0, 1, 2}}]

enter image description here

numLine[x <= 1 && x != 0, Ticks -> {{0, 1}}]

enter image description here

GraphicsColumn[{
  numLine[0 < x <= 1 || x >= 2 || x < 0],
  numLine[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]
  }]

enter image description here

Edit: Let's compare the above to the output of Wolfram|Alpha

WolframAlpha["0 < x <= 1 or x >= 2 or x < 0", {{"NumberLine", 1}, "Content"}]
WolframAlpha["0 < x <= 1 or x >= 2 or x <= 0", {{"NumberLine", 1}, "Content"}]

output of the above

Note (when viewing the above in a Mathematica session or the W|A website) the fancy tooltips on the important points and the gray, dynamic grid lines. I've stolen these ideas and incorporated them into the edited numLine[] code above.

The output from WolframAlpha is not quite a normal Graphics object, so it's hard to modify its Options or combine using Show. To see the various numberline objects that Wolfram|Alpha can return, run WolframAlpha["x>0", {{"NumberLine"}}] - "Content", "Cell" and "Input" all return basically the same object. Anyway, to get a graphics object from

wa = WolframAlpha["x>0", {{"NumberLine", 1}, "Content"}]

you can, for example, run

Graphics@@First@Cases[wa, GraphicsBox[__], Infinity, 1]

Then we can modify the graphics objects and combine them in a grid to get

aligned


For plotting open or closed intervals you could do something like:

intPlot[ss_, {s_, e_}, ee_] := Graphics[{Red, Thickness[.01],
   Text[Style[ss, Large, Red, Bold], {s, 0}],
   Text[Style[ee, Large, Red, Bold], {e, 0}],
   Line[{{s, 0}, {e, 0}}]},
  Axes -> {True, False},
  AxesStyle -> Directive[Thin, Blue, 12],
  PlotRange -> {{ s - .2 Abs@(s - e), e + .2 Abs@(s - e)}, {0, 0}},
  AspectRatio -> .1]

intPlot["[", {3, 4}, ")"]

enter image description here

Edit

Following is the nice extension done by @Simon, probably spoiled by me again trying to solve the overlapping intervals issue.

intPlot[ss_, {s_, e_}, ee_] := intPlot[{{ss, {s, e}, ee}}]
intPlot[ints : {{_String, {_?NumericQ, _?NumericQ}, _String} ..}] :=
 Module[{i = -1, c = ColorData[3, "ColorList"]},
  With[
   {min = Min[ints[[All, 2, 1]]], max = Max[ints[[All, 2, 2]]]},
   Graphics[Table[
     With[{ss = int[[1]], s = int[[2, 1]], e = int[[2, 2]], ee = int[[3]]}, 
       {c[[++i + 1]], Thickness[.01],
       Text[Style[ss, Large, c[[i + 1]], Bold], {s, i}], 
       Text[Style[ee, Large, c[[i + 1]], Bold], {e, i}],
       Line[{{s, i}, {e, i}}]}], {int, ints}], 
    Axes -> {True, False}, 
    AxesStyle -> Directive[Thin, Blue, 12], 
    PlotRange -> {{min - .2 Abs@(min - max), max + .2 Abs@(min - max)}, {0, ++i}}, 
    AspectRatio -> .2]]]

(*Examples*)

intPlot["[", {3, 4}, ")"]
intPlot[{{"(", {1, 2}, ")"}, {"[", {1.5, 4}, ")"}, 
        {"[", {2.5, 7}, ")"}, {"[", {1.5, 4}, ")"}}]

enter image description here