Plotting a number line in Mathematica
Here's an ugly solution using RegionPlot
. Open limits are represented using dotted lines and closed limits with full lines
numRegion[expr_, var_Symbol:x, range:{xmin_, xmax_}:{0, 0}, opts:OptionsPattern[]] :=
Module[{le=LogicalExpand[Reduce[expr,var,Reals]],
y, opendots, closeddots, max, min, len},
opendots = Cases[Flatten[le/.And|Or->List], n_<var|n_>var|var<n_|var>n_:>n];
closeddots = Cases[Flatten[le/.And|Or->List], n_<=var|n_>=var|var<=n_|var>=n_:>n];
{max, min} = If[TrueQ[xmin < xmax], {xmin, xmax},
{Max, Min}@Cases[le, _?NumericQ, Infinity] // Through];
len = max - min;
RegionPlot[le && -1 < y < 1, {var, min-len/10, max+len/10}, {y, -1, 1},
Epilog -> {Thick, Red, Line[{{#,1},{#,-1}}]&/@closeddots,
Dotted, Line[{{#,1},{#,-1}}]&/@opendots},
Axes -> {True,False}, Frame->False, AspectRatio->.05, opts]]
An example reducing an absolute value:
numRegion[Abs[x] < 2]
Can use any variable:
numRegion[0 < y <= 1 || y >= 2, y]
Reduce
s extraneous inequalities, compare the following:
GraphicsColumn[{numRegion[0 < x <= 1 || x >= 2 || x < 0],
numRegion[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]}]
Starting with Mathematica 10, there is NumberLinePlot
available.
Here's another attempt that draws number lines with the more conventional white and black circles, although any graphics element that you want can be easily swapped out.
It relies on LogicalExpand[Simplify@Reduce[expr, x]]
and Sort
to get the expression into something resembling a canonical form that the replacement rules can work on. This is not extensively tested and probably a little fragile. For example if the given expr
reduces to True
or False
, my code does not die gracefully.
numLine[expr_, x_Symbol:x, range:{_, _}:{Null, Null},
Optional[hs:_?NumericQ, 1/30], opts:OptionsPattern[]] :=
Module[{le = {LogicalExpand[Simplify@Reduce[expr, x]]} /. Or -> List,
max, min, len, ints = {}, h, disk, hArrow, lt = Less|LessEqual, gt = Greater|GreaterEqual},
If[TrueQ@MatchQ[range, {a_, b_} /; a < b],
{min, max} = range,
{min, max} = Through[{Min, Max}@Cases[le, _?NumericQ, \[Infinity]]]];
len =Max[{max - min, 1}]; h = len hs;
hArrow[{x1_, x2_}, head1_, head2_] := {{Thick, Line[{{x1, h}, {x2, h}}]},
Tooltip[head1, x1], Tooltip[head2, x2]};
disk[a_, ltgt_] := {EdgeForm[{Thick, Black}],
Switch[ltgt, Less | Greater, White, LessEqual | GreaterEqual, Black],
Disk[{a, h}, h]};
With[{p = Position[le, And[_, _]]},
ints = Extract[le, p] /. And -> (SortBy[And[##], First] &);
le = Delete[le, p]];
ints = ints /. (l1 : lt)[a_, x] && (l2 : lt)[x, b_] :>
hArrow[{a, b}, disk[a, l1], disk[b, l2]];
le = le /. {(*_Unequal|True|False:>Null,*)
(l : lt)[x, a_] :> (min = min - .3 len;
hArrow[{a, min}, disk[a, l],
Polygon[{{min, 0}, {min, 2 h}, {min - Sqrt[3] h, h}}]]),
(g : gt)[x, a_] :> (max = max + .3 len;
hArrow[{a, max}, disk[a, g],
Polygon[{{max, 0}, {max, 2 h}, {max + Sqrt[3] h, h}}]])};
Graphics[{ints, le}, opts, Axes -> {True, False},
PlotRange -> {{min - .1 len, max + .1 len}, {-h, 3 h}},
GridLines -> Dynamic[{{#, Gray}} & /@ MousePosition[
{"Graphics", Graphics}, None]],
Method -> {"GridLinesInFront" -> True}]
]
(Note: I had originally tried to use Arrow
and Arrowheads
to draw the lines - but since Arrowheads
automatically rescales the arrow heads with respect to the width of the encompassing graphics, it gave me too many headaches.)
OK, some examples:
numLine[0 < x],
numLine[0 > x]
numLine[0 < x <= 1, ImageSize -> Medium]
numLine[0 < x <= 1 || x > 2, Ticks -> {{0, 1, 2}}]
numLine[x <= 1 && x != 0, Ticks -> {{0, 1}}]
GraphicsColumn[{
numLine[0 < x <= 1 || x >= 2 || x < 0],
numLine[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]
}]
Edit: Let's compare the above to the output of Wolfram|Alpha
WolframAlpha["0 < x <= 1 or x >= 2 or x < 0", {{"NumberLine", 1}, "Content"}]
WolframAlpha["0 < x <= 1 or x >= 2 or x <= 0", {{"NumberLine", 1}, "Content"}]
Note (when viewing the above in a Mathematica session or the W|A website) the fancy tooltips on the important points and the gray, dynamic grid lines. I've stolen these ideas and incorporated them into the edited numLine[]
code above.
The output from WolframAlpha
is not quite a normal Graphics
object, so it's hard to modify its Options
or combine using Show
. To see the various numberline objects that Wolfram|Alpha can return, run WolframAlpha["x>0", {{"NumberLine"}}]
- "Content", "Cell" and "Input" all return basically the same object. Anyway, to get a graphics object from
wa = WolframAlpha["x>0", {{"NumberLine", 1}, "Content"}]
you can, for example, run
Graphics@@First@Cases[wa, GraphicsBox[__], Infinity, 1]
Then we can modify the graphics objects and combine them in a grid to get
For plotting open or closed intervals you could do something like:
intPlot[ss_, {s_, e_}, ee_] := Graphics[{Red, Thickness[.01],
Text[Style[ss, Large, Red, Bold], {s, 0}],
Text[Style[ee, Large, Red, Bold], {e, 0}],
Line[{{s, 0}, {e, 0}}]},
Axes -> {True, False},
AxesStyle -> Directive[Thin, Blue, 12],
PlotRange -> {{ s - .2 Abs@(s - e), e + .2 Abs@(s - e)}, {0, 0}},
AspectRatio -> .1]
intPlot["[", {3, 4}, ")"]
Edit
Following is the nice extension done by @Simon, probably spoiled by me again trying to solve the overlapping intervals issue.
intPlot[ss_, {s_, e_}, ee_] := intPlot[{{ss, {s, e}, ee}}]
intPlot[ints : {{_String, {_?NumericQ, _?NumericQ}, _String} ..}] :=
Module[{i = -1, c = ColorData[3, "ColorList"]},
With[
{min = Min[ints[[All, 2, 1]]], max = Max[ints[[All, 2, 2]]]},
Graphics[Table[
With[{ss = int[[1]], s = int[[2, 1]], e = int[[2, 2]], ee = int[[3]]},
{c[[++i + 1]], Thickness[.01],
Text[Style[ss, Large, c[[i + 1]], Bold], {s, i}],
Text[Style[ee, Large, c[[i + 1]], Bold], {e, i}],
Line[{{s, i}, {e, i}}]}], {int, ints}],
Axes -> {True, False},
AxesStyle -> Directive[Thin, Blue, 12],
PlotRange -> {{min - .2 Abs@(min - max), max + .2 Abs@(min - max)}, {0, ++i}},
AspectRatio -> .2]]]
(*Examples*)
intPlot["[", {3, 4}, ")"]
intPlot[{{"(", {1, 2}, ")"}, {"[", {1.5, 4}, ")"},
{"[", {2.5, 7}, ")"}, {"[", {1.5, 4}, ")"}}]