Print the "even" permutations of symmetric group Sn in cyclic notation
Mathematica, 84 49 31 bytes
GroupElements@*AlternatingGroup
Composition of two functions. Outputs in the form {Cycles[{}], Cycles[{{a, b}}], Cycles[{{c, d}, {e, f}}], ...}
representing (), (a b), (c d)(e f), ...
.
Pyth, 26 bytes
t#Mf%+QlT2mcdf<>dTS<dTd.pS
m .pSQ Map over permutations d of [1, …, Q]:
f d Find all indices T in [1, …, Q] such that
>dT the last Q-T elements of d
< S<dT is less than the sorted first T elements of d
cd Chop d at those indices
f Filter on results T such that
Q the input number Q
+ lT plus the length of T
% 2 modulo 2
is truthy (1)
t#M In each result, remove 0- and 1-cycles.
Try it online
This solution is based on a neat bijection between permutations in one-line notation and permutations in cycle notation. Of course, there’s the obvious bijection where the two notations represent the same permutation:
[8, 4, 6, 3, 10, 1, 5, 9, 2, 7] = (1 8 9 2 4 3 6)(5 10 7)
but that would take too much code. Instead, simply chop the one-line notation into pieces before all numbers that are smaller than all their predecessors, call these pieces cycles, and build a new permutation out of them.
[8, 4, 6, 3, 10, 1, 5, 9, 2, 7] ↦ (8)(4 6)(3 10)(1 5 9 2 7)
To reverse this bijection, we can take any permutation in cycle form, rotate each cycle so its smallest number is first, sort the cycles so that their smallest numbers appear in decreasing order, and erase all the parentheses.
J, 53 bytes
[:(<@((>:@|.~]i.<./)&.>@#~1<#@>)@C.@#~1=C.!.2)!A.&i.]
The cycles in each permutation are represented as boxed arrays since J will zero-pad ragged arrays.
If the output is relaxed, using 41 bytes
[:((1+]|.~]i.<./)&.>@C.@#~1=C.!.2)!A.&i.]
where each permutation may contain one-cycles and zero-cycles.
Usage
f =: [:(<@((>:@|.~]i.<./)&.>@#~1<#@>)@C.@#~1=C.!.2)!A.&i.]
f 3
┌┬───────┬───────┐
││┌─────┐│┌─────┐│
│││1 2 3│││1 3 2││
││└─────┘│└─────┘│
└┴───────┴───────┘
f 4
┌┬───────┬───────┬─────────┬───────┬───────┬───────┬───────┬─────────┬───────┬───────┬─────────┐
││┌─────┐│┌─────┐│┌───┬───┐│┌─────┐│┌─────┐│┌─────┐│┌─────┐│┌───┬───┐│┌─────┐│┌─────┐│┌───┬───┐│
│││2 3 4│││2 4 3│││1 2│3 4│││1 2 3│││1 2 4│││1 3 2│││1 3 4│││1 3│2 4│││1 4 2│││1 4 3│││2 3│1 4││
││└─────┘│└─────┘│└───┴───┘│└─────┘│└─────┘│└─────┘│└─────┘│└───┴───┘│└─────┘│└─────┘│└───┴───┘│
└┴───────┴───────┴─────────┴───────┴───────┴───────┴───────┴─────────┴───────┴───────┴─────────┘
For the alternative implemenation,
f =: [:((1+]|.~]i.<./)&.>@C.@#~1=C.!.2)!A.&i.]
f 3
┌─────┬─┬─┐
│1 │2│3│
├─────┼─┼─┤
│1 2 3│ │ │
├─────┼─┼─┤
│1 3 2│ │ │
└─────┴─┴─┘