Prove $\lim\limits_{h\to0}\int_a^b\left|f(x+h)-f(x)\right|\,\mathrm dx=0$
Brutal force: Let $\epsilon >0$. Then since $f$ is Riemann integrable, there is a $\delta >0$ so that any partition $P$ of $$a-1= x_0<x_1 < x_2 < \cdots x_n= b+1$$ with $x_{i+1} - x_i < \delta$ will have
$$ U(f, P)- L(f, P)<\epsilon.$$
Now consider the partition
$$ a < a+ h < a+ 2h < \cdots <a+ kh < b$$
where $a+ (k+1)h \ge b$ and $h < \delta/2$. Then
\begin{equation} \begin{split} \int_a^b |f(x+ h) - f(x)| dx &= \sum_i \int_{a+ ih}^{a+ (i+1)h} |f(x+ h) - f(x)|dx \\ &\le \sum_i h \left( \sup_{x\in [a+ih,a+ (i+2) h]} f(x) - \inf_{x\in [a+ih,a+ (i+2) h]} f(x)\right) \\ &\le U(f, \hat P ) - L(f, \hat P) < \epsilon \end{split} \end{equation}
where $\hat P$ is the partition
$$ a< a+2h< a+ 4h < \cdots < a +\ell (2h) < b,$$
where $a + (\ell +1) 2h \ge b$. Thus
$$\int_a^b |f(x+ h) - f(x)| dx < \epsilon$$
whenever $h < \delta/2$ and we are done.
Hint.
You can prove the result for continuous functions as a continuous function on a compact interval is uniformly continuous.
Then, if $f$ is Riemann-integrable, you can for all $\epsilon >0$ find a step function $h_\epsilon$ such that: $$ \int_a^b \left\vert f-h_\epsilon \right\vert < \epsilon$$ and finally a function $g_\epsilon$ continuous such that $$ \int_a^b \left\vert h_\epsilon-g_\epsilon \right\vert < \epsilon$$