Prove: Square Matrix Can Be Written As A Sum Of A Symmetric And Skew-Symmetric Matrices
If $A$ is a square matrix in $\mathcal M_n(\Bbb C)$ then $$A=\underbrace{\frac12(A+A^t)}_{\text{symmetric matrix}}+\underbrace{\frac12(A-A^t)}_{\text{skew-symmetric matrix}}$$