pandas drop multiple columns code example
Example 1: drop multiple columns pandas
yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)
Example 2: drop multiple columns in python
dataframe.drop(['columnname1', 'columnname2'], axis=1, inplace=True)
Example 3: how to drop columns in pandas
>>>df = pd.DataFrame(np.arange(12).reshape(3, 4),
columns=['A', 'B', 'C', 'D'])
>>>df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
OR
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Example 4: drop a column in pandas
note: df is your dataframe
df = df.drop('coloum_name',axis=1)
Example 5: pandas select rows by multiple conditions
>>> df["A"][(df["B"] > 50) & (df["C"] == 900)]
2 5
3 8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"]
2 5
3 8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"].values
array([5, 8], dtype=int64)
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"] *= 1000
>>> df
A B C
0 9 40 300
1 9 70 700
2 5000 70 900
3 8000 80 900
4 7 50 900