pandas drop multiple columns code example

Example 1: drop multiple columns pandas

yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)

Example 2: drop multiple columns in python

dataframe.drop(['columnname1', 'columnname2'], axis=1, inplace=True)

Example 3: how to drop columns in pandas

>>>df = pd.DataFrame(np.arange(12).reshape(3, 4), 
                     columns=['A', 'B', 'C', 'D'])
>>>df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11

OR

>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11

Example 4: drop a column in pandas

note: df is your dataframe

df = df.drop('coloum_name',axis=1)

Example 5: pandas select rows by multiple conditions

>>> df["A"][(df["B"] > 50) & (df["C"] == 900)]
2    5
3    8
Name: A, dtype: int64
    
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"]
2    5
3    8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"].values
array([5, 8], dtype=int64)
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"] *= 1000
>>> df
      A   B    C
0     9  40  300
1     9  70  700
2  5000  70  900
3  8000  80  900
4     7  50  900