Python pandas: exclude rows below a certain frequency count
How about selecting all position
rows with values >= 20
mask = df['position'] >= 20
sel = df.ix[mask, :]
I like the following method:
def filter_by_freq(df: pd.DataFrame, column: str, min_freq: int) -> pd.DataFrame:
"""Filters the DataFrame based on the value frequency in the specified column.
:param df: DataFrame to be filtered.
:param column: Column name that should be frequency filtered.
:param min_freq: Minimal value frequency for the row to be accepted.
:return: Frequency filtered DataFrame.
"""
# Frequencies of each value in the column.
freq = df[column].value_counts()
# Select frequent values. Value is in the index.
frequent_values = freq[freq >= min_freq].index
# Return only rows with value frequency above threshold.
return df[df[column].isin(frequent_values)]
It is much faster than the filter lambda method in the accepted answer - python overhead is minimised.
On your limited dataset the following works:
In [125]:
df.groupby('positions')['r vals'].filter(lambda x: len(x) >= 3)
Out[125]:
0 1.2
2 2.3
3 1.8
6 1.9
Name: r vals, dtype: float64
You can assign the result of this filter and use this with isin
to filter your orig df:
In [129]:
filtered = df.groupby('positions')['r vals'].filter(lambda x: len(x) >= 3)
df[df['r vals'].isin(filtered)]
Out[129]:
r vals positions
0 1.2 1
1 1.8 2
2 2.3 1
3 1.8 1
6 1.9 1
You just need to change 3
to 20
in your case
Another approach would be to use value_counts
to create an aggregate series, we can then use this to filter your df:
In [136]:
counts = df['positions'].value_counts()
counts
Out[136]:
1 4
3 2
2 1
dtype: int64
In [137]:
counts[counts > 3]
Out[137]:
1 4
dtype: int64
In [135]:
df[df['positions'].isin(counts[counts > 3].index)]
Out[135]:
r vals positions
0 1.2 1
2 2.3 1
3 1.8 1
6 1.9 1
EDIT
If you want to filter the groupby object on the dataframe rather than a Series then you can call filter
on the groupby object directly:
In [139]:
filtered = df.groupby('positions').filter(lambda x: len(x) >= 3)
filtered
Out[139]:
r vals positions
0 1.2 1
2 2.3 1
3 1.8 1
6 1.9 1