Python tf-idf: fast way to update the tf-idf matrix
I'll post my solution since there are no other answers. Let's say we are in the following scenario:
import gensim
from gensim import models
from gensim import corpora
from gensim import similarities
from nltk.tokenize import word_tokenize
import pandas as pd
# routines:
text = "I work on natural language processing and I want to figure out how does gensim work"
text2 = "I love computer science and I code in Python"
dat = pd.Series([text,text2])
dat = dat.apply(lambda x: str(x).lower())
dat = dat.apply(lambda x: word_tokenize(x))
dictionary = corpora.Dictionary(dat)
corpus = [dictionary.doc2bow(doc) for doc in dat]
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
#Query:
query_text = "I love icecream and gensim"
query_text = query_text.lower()
query_text = word_tokenize(query_text)
vec_bow = dictionary.doc2bow(query_text)
vec_tfidf = tfidf[vec_bow]
if we look at:
print(vec_bow)
[(0, 1), (7, 1), (12, 1), (15, 1)]
and:
print(tfidf[vec_bow])
[(12, 0.7071067811865475), (15, 0.7071067811865475)]
FYI id and doc:
print(dictionary.items())
[(0, u'and'),
(1, u'on'),
(8, u'processing'),
(3, u'natural'),
(4, u'figure'),
(5, u'language'),
(9, u'how'),
(7, u'i'),
(14, u'code'),
(19, u'in'),
(2, u'work'),
(16, u'python'),
(6, u'to'),
(10, u'does'),
(11, u'want'),
(17, u'science'),
(15, u'love'),
(18, u'computer'),
(12, u'gensim'),
(13, u'out')]
Looks like the query only picked up existing terms and using pre-calculated weights to give you the tfidf score. So my workaround is to rebuild the model weekly or daily since it is fast to do so.