Python - Turn all items in a Dataframe to strings
You can use applymap
method:
df = df.applymap(str)
This worked for me:
dt.applymap(lambda x: x[0] if type(x) is list else None)
You can use this:
df = df.astype(str)
out of curiosity I decided to see if there is any difference in efficiency between the accepted solution and mine.
The results are below:
example df:
df = pd.DataFrame([list(range(1000))], index=[0])
test df.astype
:
%timeit df.astype(str)
>> 100 loops, best of 3: 2.18 ms per loop
test df.applymap
:
%timeit df.applymap(str)
1 loops, best of 3: 245 ms per loop
It seems df.astype
is quite a lot faster :)
With pandas >= 1.0 there is now a dedicated string datatype:
You can convert your column to this pandas string datatype using .astype('string'):
df = df.astype('string')
This is different from using str
which sets the pandas 'object' datatype:
df = df.astype(str)
You can see the difference in datatypes when you look at the info of the dataframe:
df = pd.DataFrame({
'zipcode_str': [90210, 90211] ,
'zipcode_string': [90210, 90211],
})
df['zipcode_str'] = df['zipcode_str'].astype(str)
df['zipcode_string'] = df['zipcode_str'].astype('string')
df.info()
# you can see that the first column has dtype object
# while the second column has the new dtype string
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 zipcode_str 2 non-null object
1 zipcode_string 2 non-null string
dtypes: object(1), string(1)
From the docs:
The 'string' extension type solves several issues with object-dtype NumPy arrays:
1) You can accidentally store a mixture of strings and non-strings in an object dtype array. A StringArray can only store strings.
2) object dtype breaks dtype-specific operations like DataFrame.select_dtypes(). There isn’t a clear way to select just text while excluding non-text, but still object-dtype columns.
3) When reading code, the contents of an object dtype array is less clear than string.
Information about pandas 1.0 can be found here:
https://pandas.pydata.org/pandas-docs/version/1.0.0/whatsnew/v1.0.0.html