We now train the LogisticRegression model. If you've chosen to do the gridsearch, you can plug the value of C into the model declaration (e.g. `LogisticRegression(C=5.2)`). code example
Example: Exhaustive search over specified parameter values for an estimator
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
clf.fit(iris.data, iris.target)
sorted(clf.cv_results_.keys())