which plots are good for bivariate distribution seaborn code example
Example 1: plot distribution seaborn
x = np.random.normal(size=100)
sns.distplot(x);
Example 2: scatter density plot seaborn
>>> iris = sns.load_dataset("iris")
>>> g = sns.jointplot("sepal_width", "petal_length", data=iris,
... kind="kde", space=0, color="g")
Example 3: mean =[0,0] covariance = [[1,0],[0,100]] ds = np.random.multivariate_normal(mean,covariance,500) dframe = pd.DataFrame(ds, columns=['col1', 'col2']) fig = sns.kdeplot(dframe).get_figure() fig.savefig('kde1.png')
mean =[0,0]
covariance = [[1,0],[0,100]]
ds = np.random.multivariate_normal(mean,covariance,500)
dframe = pd.DataFrame(ds, columns=['col1', 'col2'])
fig = sns.kdeplot(dframe).get_figure()
fig.savefig('kde1.png')