Quintic diophantine equation
Pick any three numbers, say $1,2,3$. Compute $1^4+2^4+3^4=1+16+81=98$. Multiply through by $98^4$, and voila! $$98^4+196^4+294^4=98^5$$ If you insist on relatively prime solutions, you may have to work a little harder....
We can use the identity,
$$(2p-2q)^4+(2p+2q)^4+(4q)^4 = 2^5(p^2+3q^2)^2\tag1$$
One can then solve,
$$p^2+3q^2 = (a^2+3b^2)^k$$
for any $k$. For $k=5$, it is,
$$p =a^5 - 30 a^3 b^2 + 45 a b^4$$ $$q=b (5 a^4 - 30 a^2 b^2 + 9 b^4)$$
though $(1)$ has the common factor $2$.
Relatively prime may be difficult:
=======================
d a b c
0 0 0 0
1 0 0 1
2 0 2 2
3 3 3 3
16 0 0 32
17 0 17 34
18 18 18 36
32 0 64 64
33 22 44 77
33 33 66 66
48 96 96 96
66 110 110 176
=======================