Read all files in a nested folder in Spark
if you want use only files which start with name "a" ,you can use
sc.wholeTextFiles("/folder/a*/*/*.txt") or sc.wholeTextFiles("/folder/a*/a*/*.txt")
as well. We can use * as wildcard.
If directory structure is regular, lets say something like this:
folder
├── a
│ ├── a
│ │ └── aa.txt
│ └── b
│ └── ab.txt
└── b
├── a
│ └── ba.txt
└── b
└── bb.txt
you can use *
wildcard for each level of nesting as shown below:
>>> sc.wholeTextFiles("/folder/*/*/*.txt").map(lambda x: x[0]).collect()
[u'file:/folder/a/a/aa.txt',
u'file:/folder/a/b/ab.txt',
u'file:/folder/b/a/ba.txt',
u'file:/folder/b/b/bb.txt']
Spark 3.0 provides an option recursiveFileLookup to load files from recursive subfolders.
val df= sparkSession.read
.option("recursiveFileLookup","true")
.option("header","true")
.csv("src/main/resources/nested")
This recursively loads the files from src/main/resources/nested and it's subfolders.
sc.wholeTextFiles("/directory/201910*/part-*.lzo")
get all match files name, not files content.
if you want to load the contents of all matched files in a directory, you should use
sc.textFile("/directory/201910*/part-*.lzo")
and setting reading directory recursive!
sc._jsc.hadoopConfiguration().set("mapreduce.input.fileinputformat.input.dir.recursive", "true")
TIPS: scala differ with python, below set use to scala!
sc.hadoopConfiguration.set("mapreduce.input.fileinputformat.input.dir.recursive", "true")