Remove columns from dataframe where ALL values are NA

The two approaches offered thus far fail with large data sets as (amongst other memory issues) they create is.na(df), which will be an object the same size as df.

Here are two approaches that are more memory and time efficient

An approach using Filter

Filter(function(x)!all(is.na(x)), df)

and an approach using data.table (for general time and memory efficiency)

library(data.table)
DT <- as.data.table(df)
DT[,which(unlist(lapply(DT, function(x)!all(is.na(x))))),with=F]

examples using large data (30 columns, 1e6 rows)

big_data <- replicate(10, data.frame(rep(NA, 1e6), sample(c(1:8,NA),1e6,T), sample(250,1e6,T)),simplify=F)
bd <- do.call(data.frame,big_data)
names(bd) <- paste0('X',seq_len(30))
DT <- as.data.table(bd)

system.time({df1 <- bd[,colSums(is.na(bd) < nrow(bd))]})
# error -- can't allocate vector of size ...
system.time({df2 <- bd[, !apply(is.na(bd), 2, all)]})
# error -- can't allocate vector of size ...
system.time({df3 <- Filter(function(x)!all(is.na(x)), bd)})
## user  system elapsed 
## 0.26    0.03    0.29 
system.time({DT1 <- DT[,which(unlist(lapply(DT, function(x)!all(is.na(x))))),with=F]})
## user  system elapsed 
## 0.14    0.03    0.18 

Late to the game but you can also use the janitor package. This function will remove columns which are all NA, and can be changed to remove rows that are all NA as well.

df <- janitor::remove_empty(df, which = "cols")


Try this:

df <- df[,colSums(is.na(df))<nrow(df)]

Update

You can now use select with the where selection helper. select_if is superceded, but still functional as of dplyr 1.0.2. (thanks to @mcstrother for bringing this to attention).

library(dplyr)
temp <- data.frame(x = 1:5, y = c(1,2,NA,4, 5), z = rep(NA, 5))
not_all_na <- function(x) any(!is.na(x))
not_any_na <- function(x) all(!is.na(x))

> temp
  x  y  z
1 1  1 NA
2 2  2 NA
3 3 NA NA
4 4  4 NA
5 5  5 NA

> temp %>% select(where(not_all_na))
  x  y
1 1  1
2 2  2
3 3 NA
4 4  4
5 5  5

> temp %>% select(where(not_any_na))
  x
1 1
2 2
3 3
4 4
5 5

Old Answer

dplyr now has a select_if verb that may be helpful here:

> temp
  x  y  z
1 1  1 NA
2 2  2 NA
3 3 NA NA
4 4  4 NA
5 5  5 NA

> temp %>% select_if(not_all_na)
  x  y
1 1  1
2 2  2
3 3 NA
4 4  4
5 5  5

> temp %>% select_if(not_any_na)
  x
1 1
2 2
3 3
4 4
5 5

Tags:

R

Apply

Dataframe