Remove non-numeric rows in one column with pandas
Using pd.to_numeric
In [1079]: df[pd.to_numeric(df['id'], errors='coerce').notnull()]
Out[1079]:
id name
0 1 A
1 2 B
2 3 C
4 4 E
5 5 F
You could use standard method of strings isnumeric
and apply it to each value in your id
column:
import pandas as pd
from io import StringIO
data = """
id,name
1,A
2,B
3,C
tt,D
4,E
5,F
de,G
"""
df = pd.read_csv(StringIO(data))
In [55]: df
Out[55]:
id name
0 1 A
1 2 B
2 3 C
3 tt D
4 4 E
5 5 F
6 de G
In [56]: df[df.id.apply(lambda x: x.isnumeric())]
Out[56]:
id name
0 1 A
1 2 B
2 3 C
4 4 E
5 5 F
Or if you want to use id
as index you could do:
In [61]: df[df.id.apply(lambda x: x.isnumeric())].set_index('id')
Out[61]:
name
id
1 A
2 B
3 C
4 E
5 F
Edit. Add timings
Although case with pd.to_numeric
is not using apply
method it is almost two times slower than with applying np.isnumeric
for str
columns. Also I add option with using pandas str.isnumeric
which is less typing and still faster then using pd.to_numeric
. But pd.to_numeric
is more general because it could work with any data types (not only strings).
df_big = pd.concat([df]*10000)
In [3]: df_big = pd.concat([df]*10000)
In [4]: df_big.shape
Out[4]: (70000, 2)
In [5]: %timeit df_big[df_big.id.apply(lambda x: x.isnumeric())]
15.3 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [6]: %timeit df_big[df_big.id.str.isnumeric()]
20.3 ms ± 171 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [7]: %timeit df_big[pd.to_numeric(df_big['id'], errors='coerce').notnull()]
29.9 ms ± 682 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Given that df
is your dataframe,
import numpy as np
df[df['id'].apply(lambda x: isinstance(x, (int, np.int64)))]
What it does is passing each value in the id
column to the isinstance
function and checks if it's an int
. Then it returns a boolean array, and finally returning only the rows where there is True
.
If you also need to account for float
values, another option is:
import numpy as np
df[df['id'].apply(lambda x: type(x) in [int, np.int64, float, np.float64])]
Note that either way is not inplace, so you will need to reassign it to your original df, or create a new one:
df = df[df['id'].apply(lambda x: type(x) in [int, np.int64, float, np.float64])]
# or
new_df = df[df['id'].apply(lambda x: type(x) in [int, np.int64, float, np.float64])]