Replacing few values in a pandas dataframe column with another value

Replace

DataFrame object has powerful and flexible replace method:

DataFrame.replace(
        to_replace=None,
        value=None,
        inplace=False,
        limit=None,
        regex=False, 
        method='pad',
        axis=None)

Note, if you need to make changes in place, use inplace boolean argument for replace method:

Inplace

inplace: boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

Snippet

df['BrandName'].replace(
    to_replace=['ABC', 'AB'],
    value='A',
    inplace=True
)

The easiest way is to use the replace method on the column. The arguments are a list of the things you want to replace (here ['ABC', 'AB']) and what you want to replace them with (the string 'A' in this case):

>>> df['BrandName'].replace(['ABC', 'AB'], 'A')
0    A
1    B
2    A
3    D
4    A

This creates a new Series of values so you need to assign this new column to the correct column name:

df['BrandName'] = df['BrandName'].replace(['ABC', 'AB'], 'A')

loc method can be used to replace multiple values:

df.loc[df['BrandName'].isin(['ABC', 'AB'])] = 'A'