Same eigenvalues, different eigenvectors

Of course it's possible: $$ \begin{bmatrix} 2&0\\ 0&2 \end{bmatrix} \, \begin{bmatrix} 1\\ 0 \end{bmatrix} = 2\;\begin{bmatrix} 1\\ 0 \end{bmatrix}, \ \ \ \ \ \ \begin{bmatrix} 2&0\\ 0&2 \end{bmatrix} \, \begin{bmatrix} 0\\ 1 \end{bmatrix} = 2\;\begin{bmatrix} 0\\ 1 \end{bmatrix}. $$

What it tells you about the matrix is that the geometric multiplicity of the eigenvalue is greater than $1$.


A trivial example: Consider the 2 by 2 identity matrix. It has only one eigenvalue, namely 1. However both $e_1=(1,0)$ and $e_2=(0,1)$ are eigenvectors of this matrix.