Saving Keras models with Custom Layers
Correction number 1 is to use Custom_Objects
while loading
the Saved Model
i.e., replace the code,
new_model = tf.keras.models.load_model('model.h5')
with
new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
Since we are using Custom Layers
to build
the Model
and before Saving
it, we should use Custom Objects
while Loading
it.
Correction number 2 is to add **kwargs
in the __init__
function of the Custom Layer like
def __init__(self, k, name=None, **kwargs):
super(CustomLayer, self).__init__(name=name)
self.k = k
super(CustomLayer, self).__init__(**kwargs)
Complete working code is shown below:
import tensorflow as tf
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, name=None, **kwargs):
super(CustomLayer, self).__init__(name=name)
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super(CustomLayer, self).get_config()
config.update({"k": self.k})
return config
def call(self, input):
return tf.multiply(input, 2)
model = tf.keras.models.Sequential([
tf.keras.Input(name='input_layer', shape=(10,)),
CustomLayer(10, name='custom_layer'),
tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
])
tf.keras.models.save_model(model, 'model.h5')
new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
print(new_model.summary())
Output of the above code is shown below:
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer_1 (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
Hope this helps. Happy Learning!
You can provide manually the mapping custom_objects
in the load_model
method as mentioned in the answer https://stackoverflow.com/a/62326857/8056572 but it can be tedious when you have a lot of custom layers (or any custom callables defined. e.g. metrics, losses, optimizers, ...).
Tensorflow provides a utils function to do it automatically: tf.keras.utils.register_keras_serializable
You have to update your CustomLayer
as follows:
import tensorflow as tf
@tf.keras.utils.register_keras_serializable()
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, **kwargs):
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["k"] = self.k
return config
def call(self, input):
return tf.multiply(input, 2)
Here is the complete working code:
import tensorflow as tf
@tf.keras.utils.register_keras_serializable()
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, **kwargs):
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["k"] = self.k
return config
def call(self, input):
return tf.multiply(input, 2)
def main():
model = tf.keras.models.Sequential(
[
tf.keras.Input(name='input_layer', shape=(10,)),
CustomLayer(10, name='custom_layer'),
tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
]
)
print("SUMMARY OF THE MODEL CREATED")
print("-" * 60)
print(model.summary())
model.save('model.h5')
del model
print()
print()
model = tf.keras.models.load_model('model.h5')
print("SUMMARY OF THE MODEL LOADED")
print("-" * 60)
print(model.summary())
if __name__ == "__main__":
main()
And the corresponding output:
SUMMARY OF THE MODEL CREATED
------------------------------------------------------------
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
SUMMARY OF THE MODEL LOADED
------------------------------------------------------------
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
_________________________________________________________________
None