Scikit-learn train_test_split with indices

You can use pandas dataframes or series as Julien said but if you want to restrict your-self to numpy you can pass an additional array of indices:

from sklearn.model_selection import train_test_split
import numpy as np
n_samples, n_features, n_classes = 10, 2, 2
data = np.random.randn(n_samples, n_features)  # 10 training examples
labels = np.random.randint(n_classes, size=n_samples)  # 10 labels
indices = np.arange(n_samples)
(
    data_train,
    data_test,
    labels_train,
    labels_test,
    indices_train,
    indices_test,
) = train_test_split(data, labels, indices, test_size=0.2)

Scikit learn plays really well with Pandas, so I suggest you use it. Here's an example:

In [1]: 
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
data = np.reshape(np.random.randn(20),(10,2)) # 10 training examples
labels = np.random.randint(2, size=10) # 10 labels

In [2]: # Giving columns in X a name
X = pd.DataFrame(data, columns=['Column_1', 'Column_2'])
y = pd.Series(labels)

In [3]:
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2, 
                                                    random_state=0)

In [4]: X_test
Out[4]:

     Column_1    Column_2
2   -1.39       -1.86
8    0.48       -0.81
4   -0.10       -1.83

In [5]: y_test
Out[5]:

2    1
8    1
4    1
dtype: int32

You can directly call any scikit functions on DataFrame/Series and it will work.

Let's say you wanted to do a LogisticRegression, here's how you could retrieve the coefficients in a nice way:

In [6]: 
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model = model.fit(X_train, y_train)

# Retrieve coefficients: index is the feature name (['Column_1', 'Column_2'] here)
df_coefs = pd.DataFrame(model.coef_[0], index=X.columns, columns = ['Coefficient'])
df_coefs
Out[6]:
            Coefficient
Column_1    0.076987
Column_2    -0.352463

Here's the simplest solution (Jibwa made it seem complicated in another answer), without having to generate indices yourself - just using the ShuffleSplit object to generate 1 split.

import numpy as np 
from sklearn.model_selection import ShuffleSplit # or StratifiedShuffleSplit
sss = ShuffleSplit(n_splits=1, test_size=0.1)

data_size = 100
X = np.reshape(np.random.rand(data_size*2),(data_size,2))
y = np.random.randint(2, size=data_size)

sss.get_n_splits(X, y)
train_index, test_index = next(sss.split(X, y)) 

X_train, X_test = X[train_index], X[test_index] 
y_train, y_test = y[train_index], y[test_index]