Show that 13 divides $2^{70}+3^{70}$
Okay, I'm on a little different wavelength so I'll turn my comment into an answer.. if $n$ is odd the polynomial $x + y$ divides $x^n + y^n$. So letting $x = 2^2, y = 3^2,$ and $n = 35$ you get that $13 = 2^2 + 3^2$ divides $2^{70} + 3^{70}$.
Compute $2^{70}$ and $3^{70}$ modulo $13$ separately (e.g., using Fermat's Little Theorem). If $2^{70}\equiv a\pmod{13}$ and $3^{70}\equiv b\pmod{13}$, then what is $2^{70}+3^{70}$ congruent to modulo 13?
$2^{12} \equiv 1 \pmod{13}$ and $3^{12} \equiv 1 \pmod{13}$ by Fermat's Little Theorem.
Hence, $2^{72} \equiv 1 \pmod{13}$ and $3^{72} \equiv 1 \pmod{13}$
$2^{72} \equiv 1 \pmod{13} \Rightarrow 2^{72} \equiv 40 \pmod{13} \Rightarrow 2^{70} \equiv 10 \pmod{13}$
$3^{72} \equiv 1 \pmod{13} \Rightarrow 3^{72} \equiv 27 \pmod{13} \Rightarrow 3^{70} \equiv 3 \pmod{13}$
Hence, you get the result.