Show that $3^n+4^n+\dots+(n+2)^n=(n+3)^n$ has no answers for $n\ge 6$.
For $n \geq 6$ we have
$$\frac{(n+3)^n}{(n+2)^n} = \left( 1+\frac{1}{n+2} \right)^n = \left( 1+\frac{1}{n+2} \right)^{n+2} \cdot \left(\frac{n+2}{n+3}\right)^2$$
Both factors are monotonely increasing, hence this is at least its value for $n=6$, which is $\left(\frac{9}{8}\right)^6 \approx 2.072\dotsc > 2$.
Since $k \mapsto \frac{k+1}{k}$ is monotonely decreasing, we obtain
$$\frac{(k+1)^n}{k^n} \geq \frac{(n+3)^n}{(n+2)^n} > 2$$
for all $k = 1, \dotsc, n+2$, if $n \geq 6$. We can write this as
$$(k+1)^n-k^n > k^n$$
for all $k = 1, \dotsc, n+2$, if $n \geq 6$. This also holds for $k=0$.
In particular we have $$(n+3)^n = \sum_{k=0}^{n+2} ((k+1)^n-k^n) > \sum_{k=0}^{n+2} k^n = 1^n + 2^n + 3^n + \dotsb + (n+2)^n$$
for $n\geq 6$, an even stronger result.
Set $f(x)=\left(1-\frac{1}{x+3}\right)^x=\left(\frac{x+2}{x+3}\right)^x$ where $x\ge 6$. We have $$f'(x)=\left(\frac{x+2}{x+3}\right)^x\left(\ln\left(\frac{x+2}{x+3}\right)+\frac{x}{x^2+5x+6}\right)$$ $f'(x)<0$ for $x\ge 6$. Hence $f(x)\le f(6)=\left(\frac 89\right)^6<\frac 12$, i.e $$\left(1-\frac{1}{x+3}\right)^x< \frac 12\tag 1$$ Note $$\sum\limits_{k=1}^{n}{{{(k+2)}^{n}}}={{(n+3)}^{n}}$$ thus $$\sum\limits_{k=1}^{n}{{{\left( \frac{k+2}{n+3} \right)}^{n}}}=1$$ in other words $$\sum\limits_{k=1}^{n}{{{\left( 1-\frac{n+1-k}{n+3} \right)}^{n}}}=1$$ or $$\sum\limits_{k=1}^{n}{{{\left( 1-\frac{k}{n+3} \right)}^{n}}}=1$$ Set $$I=\sum\limits_{k=1}^{n}{{{\left( 1-\frac{k}{n+3} \right)}^{n}}}\tag 2$$ By application of Bernoulli's inequality, we have $$\left( 1-\frac{k}{n+3} \right)\le {{\left( 1-\frac{1}{n+3} \right)}^{k}}$$ therefore as $n\ge 6$ $${{\left( 1-\frac{k}{n+3} \right)}^{n}}\le {{\left( 1-\frac{1}{n+3} \right)}^{nk}}< \left(\frac12 \right)^k\tag 3$$ $(2)$ and $(3)$
$$\color{red}{I=\sum\limits_{k=1}^{n}{{{\left( 1-\frac{k}{n+3} \right)}^{n}}}<\sum_{k=1}^{n}\left(\frac12 \right)^k=1}$$