Solve Generalized Eigenvalue Problem in Numpy
For real symmetric or complex Hermitian dense matrices, you can use scipy.linalg.eigh()
to solve a generalized eigenvalue problem. To avoid extracting all the eigenvalues you can specify only the desired ones by using subset_by_index
:
from scipy.linalg import eigh
eigvals, eigvecs = eigh(A, B, eigvals_only=False, subset_by_index=[0, 1, 2])
One could use eigvals_only=True
to obtain only the eigenvalues.
Have you seen scipy.linalg.eig
? From the documentation:
Solve an ordinary or generalized eigenvalue problem of a square matrix.
This method have optional parameter b
:
scipy.linalg.eig(a, b=None, ...
b : (M, M) array_like, optional Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity matrix is assumed.