Solve: $\sqrt{x + 3 + \sqrt{x + 14}} + \sqrt{x+3 - \sqrt{x + 14}} =4 $
The domain gives $x\geq-3$ and $(x+3)^2\geq x+14$.
Now, our equation it's $$\left(\sqrt{x + 3 + \sqrt{x + 14}} + \sqrt{x+3 - \sqrt{x + 14}}\right)^2 =16 $$ or $$2x+6+2\sqrt{(x+3)^2-x-14}=16$$ or $$\sqrt{x^2+5x-5}=5-x.$$ Now, we get also $5-x\geq0$, for which we obtain $$x^2+5x-5=x^2-10x+25$$ or $$x=2,$$ which is valid.
after squaring we get $$x+3+\sqrt{x+14}+x+3-\sqrt{x+14}+2\sqrt{(x+3)^2-(x+4)}=16$$ simplifying we obtain $$\sqrt{(x+3)^2-(x+14)}=5-x$$ squaring again $$(x+3)^2-(x+14)=25+x^2-10x$$ Can you finish?