Solving a coupled system of linear ODEs (one second order, the other first order)
$$\frac{d^2 T(x)}{d x^2}-\beta (T(x)-t(x))+K=0 \tag 1$$
$$\frac{d t(x)}{dx}-\alpha(T(x)-t(x))=0 \tag 2$$
HINT :
From $(2) \qquad T=\frac{1}{\alpha}\frac{d t}{dx}+t$
$\frac{d^2T}{dx^2}=\frac{1}{\alpha}\frac{d^3t}{dx^3}+\frac{d^2t}{dx^2}$
Puting them into $(1)$ :
$\frac{1}{\alpha}\frac{d^3t}{dx^3}+\frac{d^2t}{dx^2}-\frac{\beta}{\alpha}\frac{d t}{dx} +K=0$
$$\frac{d^3t}{dx^3}+\alpha\frac{d^2t}{dx^2}-\beta\frac{d t}{dx} +\alpha K=0$$ This is a linear ODE with constant coefficients. I suppose that you can take it from here.
Hint :
Substitute $T(x)=\frac{1}{\alpha}\frac{d t(x)}{dx}+t(x)$ in $(1)$ :
$$ \frac{1}{\alpha}\frac{d^3t(x)}{dx^3}+\frac{d^2t(x)}{dx^2}-\frac{\beta}{\alpha}\frac{d t(x)}{dx} +K = 0$$
Then solve for $\frac{dt(x)}{dx}$.