Sort Pandas Dataframe by Date
You can use pd.to_datetime()
to convert to a datetime object. It takes a format parameter, but in your case I don't think you need it.
>>> import pandas as pd
>>> df = pd.DataFrame( {'Symbol':['A','A','A'] ,
'Date':['02/20/2015','01/15/2016','08/21/2015']})
>>> df
Date Symbol
0 02/20/2015 A
1 01/15/2016 A
2 08/21/2015 A
>>> df['Date'] =pd.to_datetime(df.Date)
>>> df.sort('Date') # This now sorts in date order
Date Symbol
0 2015-02-20 A
2 2015-08-21 A
1 2016-01-15 A
For future search, you can change the sort statement:
>>> df.sort_values(by='Date') # This now sorts in date order
Date Symbol
0 2015-02-20 A
2 2015-08-21 A
1 2016-01-15 A
sort
method has been deprecated and replaced with sort_values
. After converting to datetime object using df['Date']=pd.to_datetime(df['Date'])
df.sort_values(by=['Date'])
Note: to sort in-place and/or in a descending order (the most recent first):
df.sort_values(by=['Date'], inplace=True, ascending=False)
@JAB's answer is fast and concise. But it changes the DataFrame
you are trying to sort, which you may or may not want.
(Note: You almost certainly will want it, because your date columns should be dates, not strings!)
In the unlikely event that you don't want to change the dates into dates, you can also do it a different way.
First, get the index from your sorted Date
column:
In [25]: pd.to_datetime(df.Date).order().index
Out[25]: Int64Index([0, 2, 1], dtype='int64')
Then use it to index your original DataFrame
, leaving it untouched:
In [26]: df.ix[pd.to_datetime(df.Date).order().index]
Out[26]:
Date Symbol
0 2015-02-20 A
2 2015-08-21 A
1 2016-01-15 A
Magic!
Note: for Pandas versions 0.20.0 and later, use loc
instead of ix
, which is now deprecated.