Statistics: combinations in Python
Why not write it yourself? It's a one-liner or such:
from operator import mul # or mul=lambda x,y:x*y
from fractions import Fraction
def nCk(n,k):
return int( reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1) )
Test - printing Pascal's triangle:
>>> for n in range(17):
... print ' '.join('%5d'%nCk(n,k) for k in range(n+1)).center(100)
...
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
>>>
PS. edited to replace int(round(reduce(mul, (float(n-i)/(i+1) for i in range(k)), 1)))
with int(reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1))
so it won't err for big N/K
A quick search on google code gives (it uses formula from @Mark Byers's answer):
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in xrange(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return 0
choose()
is 10 times faster (tested on all 0 <= (n,k) < 1e3 pairs) than scipy.misc.comb()
if you need an exact answer.
def comb(N,k): # from scipy.comb(), but MODIFIED!
if (k > N) or (N < 0) or (k < 0):
return 0L
N,k = map(long,(N,k))
top = N
val = 1L
while (top > (N-k)):
val *= top
top -= 1
n = 1L
while (n < k+1L):
val /= n
n += 1
return val
See scipy.special.comb (scipy.misc.comb in older versions of scipy). When exact
is False, it uses the gammaln function to obtain good precision without taking much time. In the exact case it returns an arbitrary-precision integer, which might take a long time to compute.
If you want exact results and speed, try gmpy -- gmpy.comb
should do exactly what you ask for, and it's pretty fast (of course, as gmpy
's original author, I am biased;-).