Sum of Infinite series $\frac{1.3}{2}+\frac{3.5}{2^2}+\frac{5.7}{2^3}+\frac{7.9}{2^4}+......$
$$\frac{1.3}{2}+\frac{3.5}{2^2}+\frac{5.7}{2^3}+\frac{7.9}{2^4}+…=\sum_{n=1}^{\infty }\frac{(2n-1)(2n+1)}{2^n}=\sum_{n=1}^{\infty }\frac{(4n^2-1)}{2^n}$$ depending on the geometric series $$\frac{1}{1-x}=\sum_{n=0}^{\infty }x^n$$ $$(\frac{1}{1-x})'=\sum_{n=1}^{\infty }nx^{n-1}$$ $$x(\frac{1}{1-x})'=\sum_{n=1}^{\infty }nx^{n}$$ $$(x(\frac{1}{1-x})')'=\sum_{n=1}^{\infty }n^2x^{n-1}$$ $$x(x(\frac{1}{1-x})')'=\sum_{n=1}^{\infty }n^2x^{n}$$ $$4x(x(\frac{1}{1-x})')'=\sum_{n=1}^{\infty }4n^2x^{n}$$ $$4x(x(\frac{1}{1-x})')'-\frac{1}{1-x}=\sum_{n=1}^{\infty }4n^2x^{n}-\sum_{n=0}^{\infty }x^n$$ $$4x(x(\frac{1}{1-x})')'-\frac{1}{1-x}+1=\sum_{n=1}^{\infty }4n^2x^{n}-\sum_{n=1}^{\infty }x^n$$ so $$\sum_{n=1}^{\infty }x^n(4n^2-1)=\frac{4x^2+4x}{(1-x)^3}-\frac{x}{1-x}$$ now let $x=1/2$ to get $23$