Sum of kth roots ($\sum\sqrt[k]{m}$)
You have : $$ M^{1/k} = 1 + \frac{1}{k} \ln M + \frac{1}{2} \ln^2 M \frac{1}{k^2} + O(1/k^3)$$ Since $$\sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + O(1/n^2)$$ $$\sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} - \frac{1}{n} + O(1/n^2)$$ we deduce : $$\sum_{k=1}^n M^{1/k} = n + \ln M. \ln n + C + (\ln M + \ln^2 M) \frac{1}{2n} + O(1/n^2),$$ for some constant $C$.