Suppose $f(x)-f(y)=h(g(x)-g(y))$, then $h$ is linear?
Fix $c$. If
$$f(x)-f(y)=h(g(x)-g(y))$$
then
$$f(x)-f(y)=h(g_{2}(x)-g_{2}(y))$$
where
$$g_{2}(x)=g(x)-g(c)$$.
I think that completes your argument.
Neat question.
Fix $c$. If
$$f(x)-f(y)=h(g(x)-g(y))$$
then
$$f(x)-f(y)=h(g_{2}(x)-g_{2}(y))$$
where
$$g_{2}(x)=g(x)-g(c)$$.
I think that completes your argument.
Neat question.