Menu
NEWBEDEV
Python
Javascript
Linux
Cheat sheet
NEWBEDEV
Python 1
Javascript
Linux
Cheat sheet
Contact
New posts in Symmetric Polynomials
prove that $\sum_{cyc}\frac{a}{b^2+c^2}\ge \frac{4}{5}\sum_{cyc}\frac{1}{b+c}$
May 09, 2021
Proving $6(x^3+y^3+z^3)^2 \leq (x^2+y^2+z^2)^3$, where $x+y+z=0$
May 09, 2021
Proving $(a+b+c) \Big(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Big) \leqslant 25$
May 09, 2021
prove $a^3+b^3+c^3+3abc\ge \sum_{cyc}ab(a+b)$
May 09, 2021
Prove that $1 \leq A \leq \frac{5}{4}$ and $0 \leq B < \frac{81}{16}$
May 09, 2021
If $a^2 + b^2 + c^2 = 1$, what is the the minimum value of $\frac {ab}{c} + \frac {bc}{a} + \frac {ca}{b}$?
May 09, 2021
Find maximum $k \in \mathbb{R}^{+}$ such that $ \frac{a^3}{(b-c)^2} + \frac{b^3}{(c-a)^2} + \frac{c^3}{(a-b)^2} \geq k (a+b+c) $
May 08, 2021
Prove $(a^2+b^2+c^2)^3 \geqq 9(a^3+b^3+c^3)$
May 08, 2021
Prove $\frac{x^2+yz}{\sqrt{2x^2(y+z)}}+\frac{y^2+zx}{\sqrt{2y^2(z+x)}}+\frac{z^2+xy}{\sqrt{2z^2(x+y)}}\geqq 1$
May 08, 2021
Prove the following inequality $\sum_{i<j<k}\frac{a_ia_ja_k}{(n-2)(n-1)n}\le \bigg(\sum_{i<j}\frac{a_ia_j}{(n-1)n}\bigg)^2+\frac{1}{12}$
May 08, 2021
Older Entries »