TensorFlow: training on my own image

If you are interested in how to input your own data in TensorFlow, you can look at this tutorial.
I've also written a guide with best practices for CS230 at Stanford here.


New answer (with tf.data) and with labels

With the introduction of tf.data in r1.4, we can create a batch of images without placeholders and without queues. The steps are the following:

  1. Create a list containing the filenames of the images and a corresponding list of labels
  2. Create a tf.data.Dataset reading these filenames and labels
  3. Preprocess the data
  4. Create an iterator from the tf.data.Dataset which will yield the next batch

The code is:

# step 1
filenames = tf.constant(['im_01.jpg', 'im_02.jpg', 'im_03.jpg', 'im_04.jpg'])
labels = tf.constant([0, 1, 0, 1])

# step 2: create a dataset returning slices of `filenames`
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))

# step 3: parse every image in the dataset using `map`
def _parse_function(filename, label):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string, channels=3)
    image = tf.cast(image_decoded, tf.float32)
    return image, label

dataset = dataset.map(_parse_function)
dataset = dataset.batch(2)

# step 4: create iterator and final input tensor
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()

Now we can run directly sess.run([images, labels]) without feeding any data through placeholders.


Old answer (with TensorFlow queues)

To sum it up you have multiple steps:

  1. Create a list of filenames (ex: the paths to your images)
  2. Create a TensorFlow filename queue
  3. Read and decode each image, resize them to a fixed size (necessary for batching)
  4. Output a batch of these images

The simplest code would be:

# step 1
filenames = ['im_01.jpg', 'im_02.jpg', 'im_03.jpg', 'im_04.jpg']

# step 2
filename_queue = tf.train.string_input_producer(filenames)

# step 3: read, decode and resize images
reader = tf.WholeFileReader()
filename, content = reader.read(filename_queue)
image = tf.image.decode_jpeg(content, channels=3)
image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_images(image, [224, 224])

# step 4: Batching
image_batch = tf.train.batch([resized_image], batch_size=8)

Based on @olivier-moindrot's answer, but for Tensorflow 2.0+:

# step 1
filenames = tf.constant(['im_01.jpg', 'im_02.jpg', 'im_03.jpg', 'im_04.jpg'])
labels = tf.constant([0, 1, 0, 1])

# step 2: create a dataset returning slices of `filenames`
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))

def im_file_to_tensor(file, label):
    def _im_file_to_tensor(file, label):
        path = f"../foo/bar/{file.numpy().decode()}"
        im = tf.image.decode_jpeg(tf.io.read_file(path), channels=3)
        im = tf.cast(image_decoded, tf.float32) / 255.0
        return im, label
    return tf.py_function(_im_file_to_tensor, 
                          inp=(file, label), 
                          Tout=(tf.float32, tf.uint8))

dataset = dataset.map(im_file_to_tensor)

If you are hitting an issue similar to:

ValueError: Cannot take the length of Shape with unknown rank

when passing tf.data.Dataset tensors to model.fit, then take a look at https://github.com/tensorflow/tensorflow/issues/24520. A fix for the code snippet above would be:

def im_file_to_tensor(file, label):
    def _im_file_to_tensor(file, label):
        path = f"../foo/bar/{file.numpy().decode()}"
        im = tf.image.decode_jpeg(tf.io.read_file(path), channels=3)
        im = tf.cast(image_decoded, tf.float32) / 255.0
        return im, label

    file, label = tf.py_function(_im_file_to_tensor, 
                                 inp=(file, label), 
                                 Tout=(tf.float32, tf.uint8))
    file.set_shape([192, 192, 3])
    label.set_shape([])
    return (file, label)