Third degree Taylor series of $f(x) = e^x \cos{x} $
Taylor's theorem allows you to use the Big O notation: $$\cos(x)= 1-\frac{x^2}{2!}+O(x^4)\quad\mbox{and}\quad e^x=1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}+O(x^4).$$ Therefore $$e^x\cos(x)=1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}+O(x^4)-\frac{x^2}{2!}(1+x+O(x^2))=1+x-\frac{x^3}{3}+O(x^4).$$