Upper bound on expected norm of subgaussian random matrix
Since $\|A\|_{op}\le \|A\|_F=\sqrt{\operatorname{tr}(A^{\top}A)}$, $$ \mathsf{E}\|A\|_{op}\le \mathsf{E}\sqrt{\sum_{i=1}^n\sum_{j=1}^m A_{ij}^2}\overset{(1)}{\le} \sqrt{\sum_{i=1}^n\sum_{j=1}^m \mathsf{E}A_{ij}^2}\overset{(2)}{\le} 2\sigma\sqrt{n\times m}, $$ where $(1)$ follows from Jensen's inequality and $(2)$ follows from Theorem 2.1.1 in the lecture notes.
To get a tighter bound involving $\sqrt{n+m}$, one may use the following tail bound (Theorem 4.4.5 in Vershynin, R., High-Dimensional Probability): $$ \mathsf{P}(\|A\|_{op}>CK(\sqrt{n+m}+t))\le e^{-t^2}, \quad t>0, $$ where $C>0$ is a constant and $K\equiv\inf\{t>0:\mathsf{E}\exp(A_{11}^2/t^2)\le 2\}$.
Using this bound \begin{align} \mathsf{E}\|A\|_{op}&=\int_0^{\infty}\mathsf{P}(\|A\|_{op}>t)dt\le CK\sqrt{n+m}+CK\int_{\sqrt{n+m}}^{\infty}e^{-\frac{(t-\sqrt{n+m})^2}{2}}dt \\ &=CK\left(\sqrt{n+m}+\sqrt{\pi/2}\right)\le C'K\sqrt{n+m}. \end{align}
Finally, $K$ can be found using the Orlicz condition in Theorem 2.1.1 in the lecture notes.