ValueError: Cannot convert column into bool
It is complaining because you give your calc_dif function the whole column objects, not the actual data of the respective rows. You need to use a udf
to wrap your calc_dif
function :
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
l = [(2, 1), (1,1)]
df = spark.createDataFrame(l)
def calc_dif(x,y):
# using the udf the calc_dif is called for every row in the dataframe
# x and y are the values of the two columns
if (x>y) and (x==1):
return x-y
udf_calc = udf(calc_dif, IntegerType())
dfNew = df.withColumn("calc", udf_calc("_1", "_2"))
dfNew.show()
# since x < y calc_dif returns None
+---+---+----+
| _1| _2|calc|
+---+---+----+
| 2| 1|null|
| 1| 1|null|
+---+---+----+
Either use udf
:
from pyspark.sql.functions import udf
@udf("integer")
def calc_dif(x,y):
if (x>y) and (x==1):
return x-y
or case when (recommended)
from pyspark.sql.functions import when
def calc_dif(x,y):
when(( x > y) & (x == 1), x - y)
The first one computes on Python objects, the second one on Spark Columns