Vertical shift of polynomials with integer roots

The roots of such polynomial pairs are essentially the ideal solutions of the Prouhet–Tarry–Escott problem .

According to above wiki entry, ideals solutions are known for $3 \le n \le 10$ and for $n = 12$. No ideal solution is known for $n = 11$ or for $n \ge 13$.

Following solution for $n = 12$ is extracted from Chen Shuwen's Equal sums of like powers page. Let $$\begin{align} (a)_{i=1}^{12} &= (1,12,25,66,91,130,174,213,238,279,292,303)\\ (b)_{i=1}^{12} &= (4,6,31,58,105,117,187,199,246,273,298,300) \end{align} $$ and consider following two polynomials of degree $12$, $$A(x) = \prod_{i=1}^{12} (x - a_i)\quad\text{ and }\quad B(x) = \prod_{i=1}^{12} (x - b_i)$$ We have $$B(x) - A(x) = 67440294559676054016000$$


I don't expect there will be an upper bound.

In the C++ program at the end, note how s4 and t4 are ignored with 4 integers.

The first bit is gp-Pari

parisize = 4000000, primelimit = 500000
? (x-1)*(x-5)*(x-8)*(x-12)
%1 = x^4 - 26*x^3 + 221*x^2 - 676*x + 480
? (x-2)*(x-3)*(x-10)*(x-11)
%2 = x^4 - 26*x^3 + 221*x^2 - 676*x + 660
?

====================================================

jagy@phobeusjunior:~$ ./mse
   1   5   8  12      2   3  10  11
   2   6   9  13      3   4  11  12
   1   7   8  14      2   4  11  13
   3   7  10  14      4   5  12  13
   2   8   9  15      3   5  12  14
   4   8  11  15      5   6  13  14
   3   9  10  16      4   6  13  15
   1   6  11  16      2   4  13  15
   5   9  12  16      6   7  14  15
   1   8  10  17      2   5  13  16
   4  10  11  17      5   7  14  16
   2   7  12  17      3   5  14  16
   6  10  13  17      7   8  15  16
   1   9  10  18      3   4  15  16
   2   9  11  18      3   6  14  17
   5  11  12  18      6   8  15  17
   3   8  13  18      4   6  15  17
   7  11  14  18      8   9  16  17
   2  10  11  19      4   5  16  17
   1   8  12  19      3   4  16  17
   3  10  12  19      4   7  15  18

====================================================

int main()
{
  for(mpz_class d = 4; d <= 25; ++d){
  for(mpz_class c = 3; c < d; ++c){
  for(mpz_class b = 2; b < c; ++b){
  for(mpz_class a = 1; a < b; ++a){

   mpz_class s1,s2,s3,s4;
   s1 = a + b + c + d ;
   s2 = a*a + b*b + c*c + d*d;
   s3 = a*a*a + b*b*b + c*c*c + d*d*d;
   s4 = a*a*a*a + b*b*b*b + c*c*c*c + d*d*d*d;

   for(mpz_class h = 4; h < d; ++h){
   for(mpz_class g = 3; g < h; ++g){
   for(mpz_class f = 2; f < g; ++f){
   for(mpz_class e = 1; e < f; ++e){

      mpz_class t1,t2,t3,t4;
   t1 = e + f + g + h ;
   t2 = e*e + f*f + g*g + h*h;
   t3 = e*e*e + f*f*f + g*g*g + h*h*h;
   t4 = e*e*e*e + f*f*f*f + g*g*g*g + h*h*h*h;


   if( s1 == t1 && s2 == t2 && s3 == t3 )
  {

    cout << setw(4) << a << setw(4) << b << setw(4) << c << setw(4) << d;
    cout << "   ";
    cout << setw(4) << e << setw(4) << f << setw(4) << g << setw(4) << h;
    cout << endl;

  }

  }}}}  //  efgh

  }}}} // abcd

  return 0;
}

=================================================


here is quintic, all positive integer roots (distinct) with the smallest maximal element, which turns out to be 19.

   2   3  11  15  19      1   5   9  17  18  

===========================================================

? ( x-2)*(x-3)*(x-11)*(x-15)*(x-19) 
%3 = x^5 - 50*x^4 + 890*x^3 - 6700*x^2 + 19629*x - 18810
? ( x-1)*(x-5)*(x-9)*(x-17)*(x-18) 
%4 = x^5 - 50*x^4 + 890*x^3 - 6700*x^2 + 19629*x - 13770
?

==========================================================

quintic program slowed way, way, down, I had it print the time at each success

jagy@phobeusjunior:~$ ./mse
Sat Aug 24 16:46:03 PDT 2019
progress  10
   2   3  11  15  19      1   5   9  17  18
Sat Aug 24 16:50:39 PDT 2019

progress  20
   3   4  12  16  20      2   6  10  18  19
Sat Aug 24 16:54:37 PDT 2019

   2   4  13  15  21      1   7   9  18  20
Sat Aug 24 16:59:55 PDT 2019

   4   5  13  17  21      3   7  11  19  20
Sat Aug 24 17:01:26 PDT 2019

   3   5  14  16  22      2   8  10  19  21
Sat Aug 24 17:10:22 PDT 2019

   5   6  14  18  22      4   8  12  20  21
Sat Aug 24 17:12:45 PDT 2019

   4   6  15  17  23      3   9  11  20  22
Sat Aug 24 17:27:05 PDT 2019

   6   7  15  19  23      5   9  13  21  22
Sat Aug 24 17:30:53 PDT 2019

Tags:

Polynomials