Welcoming 2019 Pi day: How to draw the letter π?
Here's one with \shapepar
, with great thanks to flowframtk.
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{libertine}
\usepackage{shapepar}
\newcommand{\sep}{\discretionary{}{}{}}
\begin{document}
\small%
\shapepar[1.00375pt]{{137.821777}%
{0.0}b{27.0}%
\\{0.0}t{27.0}{249.0}%
\\{11.955168}t{14.0}{250.0}%
\\{23.910336}t{2.0}{249.0}%
\\{27.074219}t{0.0}{135.5}st{135.5}{111.5}%
\\{35.865504}t{57.0}{35.0}t{179.0}{35.0}%
\\{47.820672}t{56.0}{34.0}t{178.0}{34.0}%
\\{59.775841}t{55.0}{34.0}t{177.0}{34.0}%
\\{71.731009}t{53.0}{35.0}t{175.0}{35.0}%
\\{83.686177}t{52.0}{34.0}t{174.0}{34.0}%
\\{95.641345}t{51.0}{34.0}t{173.0}{34.0}%
\\{107.596513}t{49.0}{35.0}t{171.0}{35.0}%
\\{119.551681}t{48.0}{34.0}t{170.0}{34.0}%
\\{131.506849}t{47.0}{34.0}t{169.0}{34.0}%
\\{135.137695}t{46.0}{35.0}t{168.0}{35.0}%
\\{143.462017}t{45.0}{35.0}t{168.0}{34.0}%
\\{154.276367}t{44.0}{34.0}t{166.0}{35.0}%
\\{155.417186}t{44.0}{34.0}t{166.0}{35.0}%
\\{163.378906}t{43.0}{34.0}t{166.0}{34.0}%
\\{167.372354}t{43.0}{34.0}t{165.0}{35.0}t{256.0}{3.0}%
\\{171.936859}t{42.0}{34.0}t{165.0}{35.0}t{253.0}{8.0}%
\\{179.327522}t{41.0}{35.0}t{165.0}{35.0}t{248.0}{13.0}%
\\{182.050781}t{41.0}{34.0}t{165.0}{36.0}t{245.0}{15.0}%
\\{187.185547}t{40.0}{35.0}t{166.0}{36.0}t{240.0}{17.0}%
\\{191.28269}t{40.0}{34.0}t{166.0}{39.0}t{235.0}{19.0}%
\\{193.214996}t{40.0}{34.0}t{166.0}{40.0}t{232.0}{20.0}%
\\{197.688477}t{39.0}{35.0}t{167.0}{50.0}jt{217.0}{31.0}%
\\{198.388672}t{39.0}{35.0}t{167.0}{80.0}%
\\{203.237858}t{39.0}{34.0}t{169.0}{72.0}%
\\{207.880219}t{38.0}{34.0}t{171.0}{64.0}%
\\{207.958008}t{38.0}{34.0}t{171.0}{64.0}%
\\{215.193026}t{37.0}{19.0}t{175.0}{49.0}%
\\{215.660156}t{37.0}{18.0}t{176.0}{47.0}%
\\{222.195312}t{37.0}{2.0}t{186.0}{23.0}%
\\{222.195312}e{37.0}%
\\{223.362305}t{191.0}{13.0}%
\\{223.362305}e{191.0}%
}%
3\sep{}.\sep{}1\sep{}4\sep{}1\sep{}5\sep{}9\sep{}2\sep{}6\sep{}5\sep{}3\sep{}5\sep{}8\sep{}9\sep{}7\sep{}9\sep{}3\sep{}2\sep{}3\sep{}8\sep{}4\sep{}6\sep{}2\sep{}6\sep{}4\sep{}3\sep{}3\sep{}8\sep{}3\sep{}2\sep{}7\sep{}9\sep{}5\sep{}0\sep{}2\sep{}8\sep{}8\sep{}4\sep{}1\sep{}9\sep{}7\sep{}1\sep{}6\sep{}9\sep{}3\sep{}9\sep{}9\sep{}3\sep{}7\sep{}5\sep{}1\sep{}0\sep{}5\sep{}8\sep{}2\sep{}0\sep{}9\sep{}7\sep{}4\sep{}9\sep{}4\sep{}4\sep{}5\sep{}9\sep{}2\sep{}3\sep{}0\sep{}7\sep{}8\sep{}1\sep{}6\sep{}4\sep{}0\sep{}6\sep{}2\sep{}8\sep{}6\sep{}2\sep{}0\sep{}8\sep{}9\sep{}9\sep{}8\sep{}6\sep{}2\sep{}8\sep{}0\sep{}3\sep{}4\sep{}8\sep{}2\sep{}5\sep{}3\sep{}4\sep{}2\sep{}1\sep{}1\sep{}7\sep{}0\sep{}6\sep{}7\sep{}9\sep{}8\sep{}2\sep{}1\sep{}4\sep{}8\sep{}0\sep{}8\sep{}6\sep{}5\sep{}1\sep{}3\sep{}2\sep{}8\sep{}2\sep{}3\sep{}0\sep{}6\sep{}6\sep{}4\sep{}7\sep{}0\sep{}9\sep{}3\sep{}8\sep{}4\sep{}4\sep{}6\sep{}0\sep{}9\sep{}5\sep{}5\sep{}0\sep{}5\sep{}8\sep{}2\sep{}2\sep{}3\sep{}1\sep{}7\sep{}2\sep{}5\sep{}3\sep{}5\sep{}9\sep{}4\sep{}0\sep{}8\sep{}1\sep{}2\sep{}8\sep{}4\sep{}8\sep{}1\sep{}1\sep{}1\sep{}7\sep{}4\sep{}5\sep{}0\sep{}2\sep{}8\sep{}4\sep{}1\sep{}0\sep{}2\sep{}7\sep{}0\sep{}1\sep{}9\sep{}3\sep{}8\sep{}5\sep{}2\sep{}1\sep{}1\sep{}0\sep{}5\sep{}5\sep{}5\sep{}9\sep{}6\sep{}4\sep{}4\sep{}6\sep{}2\sep{}2\sep{}9\sep{}4\sep{}8\sep{}9\sep{}5\sep{}4\sep{}9\sep{}3\sep{}0\sep{}3\sep{}8\sep{}1\sep{}9\sep{}6\sep{}4\sep{}4\sep{}2\sep{}8\sep{}8\sep{}1\sep{}0\sep{}9\sep{}7\sep{}5\sep{}6\sep{}6\sep{}5\sep{}9\sep{}3\sep{}3\sep{}4\sep{}4\sep{}6\sep{}1\sep{}2\sep{}8\sep{}4\sep{}7\sep{}5\sep{}6\sep{}4\sep{}8\sep{}2\sep{}3\sep{}3\sep{}7\sep{}8\sep{}6\sep{}7\sep{}8\sep{}3\sep{}1\sep{}6\sep{}5\sep{}2\sep{}7\sep{}1\sep{}2\sep{}0\sep{}1\sep{}9\sep{}0\sep{}9\sep{}1\sep{}4\sep{}5\sep{}6\sep{}4\sep{}8\sep{}5\sep{}6\sep{}6\sep{}9\sep{}2\sep{}3\sep{}4\sep{}6\sep{}0\sep{}3\sep{}4\sep{}8\sep{}6\sep{}1\sep{}0\sep{}4\sep{}5\sep{}4\sep{}3\sep{}2\sep{}6\sep{}6\sep{}4\sep{}8\sep{}2\sep{}1\sep{}3\sep{}3\sep{}9\sep{}3\sep{}6\sep{}0\sep{}7\sep{}2\sep{}6\sep{}0\sep{}2\sep{}4\sep{}9\sep{}1\sep{}4\sep{}1\sep{}2\sep{}7\sep{}3\sep{}7\sep{}2\sep{}4\sep{}5\sep{}8\sep{}7\sep{}0\sep{}0\sep{}6\sep{}6\sep{}0\sep{}6\sep{}3\sep{}1\sep{}5\sep{}5\sep{}8\sep{}8\sep{}1\sep{}7\sep{}4\sep{}8\sep{}8\sep{}1\sep{}5\sep{}2\sep{}0\sep{}9\sep{}2\sep{}0\sep{}9\sep{}6\sep{}2\sep{}8\sep{}2\sep{}9\sep{}2\sep{}5\sep{}4\sep{}0\sep{}9\sep{}1\sep{}7\sep{}1\sep{}5\sep{}3\sep{}6\sep{}4\sep{}3\sep{}6\sep{}7\sep{}8\sep{}9\sep{}2\sep{}5\sep{}9\sep{}0\sep{}3\sep{}6\sep{}0\sep{}0\sep{}1\sep{}1\sep{}3\sep{}3\sep{}0\sep{}5\sep{}3\sep{}0\sep{}5\sep{}4\sep{}8\sep{}8\sep{}2\sep{}0\sep{}4\sep{}6\sep{}6\sep{}5\sep{}2\sep{}1\sep{}3\sep{}8\sep{}4\sep{}1\sep{}4\sep{}6\sep{}9\sep{}5\sep{}1\sep{}9\sep{}4\sep{}1\sep{}5\sep{}1\sep{}1\sep{}6\sep{}0\sep{}9\sep{}4\sep{}3\sep{}3\sep{}0\sep{}5\sep{}7\sep{}2\sep{}7\sep{}0\sep{}3\sep{}6\sep{}5\sep{}7\sep{}5\sep{}9\sep{}5\sep{}9\sep{}1\sep{}9\sep{}5\sep{}3\sep{}0\sep{}9\sep{}2\sep{}1\sep{}8\sep{}6\sep{}1\sep{}1\sep{}7\sep{}3\sep{}8\sep{}1\sep{}9\sep{}3\sep{}2\sep{}6\sep{}1\sep{}1\sep{}7\sep{}9\sep{}3\sep{}1\sep{}0\sep{}5\sep{}1\sep{}1\sep{}8\sep{}5\sep{}4\sep{}8\sep{}0\sep{}7\sep{}4\sep{}4\sep{}6\sep{}2\sep{}3\sep{}7\sep{}9\sep{}9\sep{}6\sep{}2\sep{}7\sep{}4\sep{}9\sep{}5\sep{}6\sep{}7\sep{}3\sep{}5\sep{}1\sep{}8\sep{}8\sep{}5\sep{}7\sep{}5\sep{}2\sep{}7\sep{}2\sep{}4\sep{}8\sep{}9\sep{}1\sep{}2\sep{}2\sep{}7\sep{}9\sep{}3\sep{}8\sep{}1\sep{}8\sep{}3\sep{}0\sep{}1\sep{}1\sep{}9\sep{}4\sep{}9\sep{}1\sep{}2\sep{}9\sep{}8\sep{}3\sep{}3\sep{}6\sep{}7\sep{}3\sep{}3\sep{}6\sep{}2\sep{}4\sep{}4\sep{}0\sep{}6\sep{}5\sep{}6\sep{}6\sep{}4\sep{}3\sep{}0\sep{}8\sep{}6\sep{}0\sep{}2\sep{}1\sep{}3\sep{}9\sep{}4\sep{}9\sep{}4\sep{}6\sep{}3\sep{}9\sep{}5\sep{}2\sep{}2\sep{}4\sep{}7\sep{}3\sep{}7\sep{}1\sep{}9\sep{}0\sep{}7\sep{}0\sep{}2\sep{}1\sep{}7\sep{}9\sep{}8\sep{}6\sep{}0\sep{}9\sep{}4\sep{}3\sep{}7\sep{}0\sep{}2\sep{}7\sep{}7\sep{}0\sep{}5\sep{}3\sep{}9\sep{}2\sep{}1\sep{}7\sep{}1\sep{}7\sep{}6\sep{}2\sep{}9\sep{}3\sep{}1\sep{}7\sep{}6\sep{}7\sep{}5\sep{}2\sep{}3\sep{}8\sep{}4\sep{}6\sep{}7\sep{}4\sep{}8\sep{}1\sep{}8\sep{}4\sep{}6\sep{}7\sep{}6\sep{}6\sep{}9\sep{}4\sep{}0\sep{}5\sep{}1\sep{}3\sep{}2\sep{}0\sep{}0\sep{}0\sep{}5\sep{}6\sep{}8\sep{}1\sep{}2\sep{}7\sep{}1\sep{}4\sep{}5\sep{}2\sep{}6\sep{}3\sep{}5\sep{}6\sep{}0\sep{}8\sep{}2\sep{}7\sep{}7\par
\end{document}
Some tessellated pi...
This one is done in plain Metapost, so compile with mpost
.
prologues := 3;
outputtemplate := "%j%c.eps";
input colorbrewer-rgb;
beginfig(1);
path pi; numeric t; t = 13;
pi = (origin -- (5,0) -- (5,1) -- (4,1) -- (4,4) -- (3,4) -- (3,1) -- (2,1) -- (2,4) -- (1,4) -- (1,1) -- up -- cycle) scaled t;
for i=1 upto 48:
for j=1 upto 48:
fill pi shifted (4t*i-2t*j, t*i+5t*j) withcolor Spectral[7][i mod 7 + 1];
fill pi rotated 180 shifted (4t, 5t) shifted (4t*i-2t*j, t*i+5t*j) withcolor Spectral[7][(3+i) mod 7 + 1];
endfor
endfor
clip currentpicture to unitsquare scaled 100t shifted (0, 32t);
endfig;
end.
You will need to load Metapost Colorbrewer for the colours...
Writing π with the digits of π - using the verbatim
environment.
\documentclass{article}
\linespread{0.7}
\begin{document}
\begin{verbatim}
3.141592653589793238462643383279
5028841971693993751058209749445923
07816406286208998628034825342117067
9821 48086 5132
823 06647 09384
46 09550 58223
17 25359 4081
2848 1117
4502 8410
2701 9385
21105 55964
46229 48954
9303 81964
4288 10975
66593 34461
284756 48233
78678 31652 71
2019091 456485 66
9234603 48610454326648
2133936 0726024914127
3724587 00660631558
817488 152092096
\end{verbatim}
\end{document}
Based on ascii art drawing by Jorel - https://www.flickr.com/photos/jorel314/3352784321/